机器臂关节角路径的优化设计
问题一
代码
- Matlab
clc
clear
% 参数定义
a = [0, 300, 1200, 300, 0, 0];
alpha = [0, -90, 0, -90, -90, -90];
d = [600, 0, 0, 1200, 0, 0];
theta_min = [-160, -150, -200, -180, -120, -180];
theta_max = [160, 15, 80, 180, 120, 180];
P_target = [1500, 1200, 200]; % 目标位置
lambda = 1; % 权重因子
% 初始种群生成
population_size = 100;
num_generations = 100;
crossover_rate = 0.8;
mutation_rate = 0.1;
% 随机生成初始种群
population = zeros(population_size, 6);
for i = 1:population_size
for j = 1:6
population(i, j) = theta_min(j) + (theta_max(j) - theta_min(j)) * rand;
end
end
% 遗传算法主程序
for generation = 1:num_generations
% 适应度计算
fitness_values = zeros(population_size, 1);
for i = 1:population_size
fitness_values(i) = fitness(population(i, :), P_target);
end
% 将适应度值转换为非负值
min_fitness = min(fitness_values);
fitness_values = fitness_values - min_fitness + 1; % 确保所有适应度值为正
% 选择(轮盘赌算法)
probabilities = fitness_values / sum(fitness_values);
selected_indices = randsample(1:population_size, population_size, true, probabilities);
selected_population = population(selected_indices, :);
% 交叉
new_population = zeros(population_size, 6);
for i = 1:2:population_size
if rand < crossover_rate
crossover_point = randi([1, 5]);
new_population(i, :) = [selected_population(i, 1:crossover_point), selected_population(i + 1, crossover_point + 1:end)];
new_population(i + 1, :) = [selected_population(i + 1, 1:crossover_point), selected_population(i, crossover_point + 1:end)];
else
new_population(i, :) = selected_population(i, :);
new_population(i + 1, :) = selected_population(i + 1, :);
end
end
% 变异
for i = 1:population_size
if rand < mutation_rate
mutation_point = randi([1, 6]);
new_population(i, mutation_point) = theta_min(mutation_point) + (theta_max(mutation_point) - theta_min(mutation_point)) * rand;
end
end
population = new_population;
end
% 输出最优解
fitness_values = zeros(population_size, 1);
for i = 1:population_size
fitness_values(i) = fitness(population(i, :), P_target);
end
[~, best_index] = min(fitness_values);
best_solution = population(best_index, :)
best_fitness = fitness_values(best_index)
% 正运动学计算函数
function T = forward_kinematics(theta)
a = [0, 300, 1200, 300, 0, 0];
alpha = [0, -90, 0, -90, -90, -90];
d = [600, 0, 0, 1200, 0, 0];
T = eye(4);
for i = 1:6
A = [cosd(theta(i)), -sind(theta(i)) * cosd(alpha(i)), sind(theta(i)) * sind(alpha(i)), a(i) * cosd(theta(i));
sind(theta(i)), cosd(theta(i)) * cosd(alpha(i)), -cosd(theta(i)) * sind(alpha(i)), a(i) * sind(theta(i));
0, sind(alpha(i)), cosd(alpha(i)), d(i);
0, 0, 0, 1];
T = T * A;
end
end
% 适应度计算函数
function E_error = fitness(theta, P_target)
T = forward_kinematics(theta);
P_actual = T(1:3, 4)';
E_error = norm(P_target - P_actual);
end
- Python
import numpy as np
from scipy.optimize import minimize
# D-H参数
a = [0, 300, 1200, 300, 0, 0]
alpha = [0, -np.pi/2, 0, -np.pi/2, -np.pi/2, -np.pi/2]
d = [600, 0, 0, 1200, 0, 0]
theta_ranges = [(-160, 160), (-150, 15), (-200, 80), (-180, 180), (-120, 120), (-180, 180)]
# 目标位置
target = np.array([1500, 1200, 200])
# 计算D-H矩阵
def dh_matrix(a, alpha, d, theta):
return np.array([
[np.cos(theta), -np.sin(theta)*np.cos(alpha), np.sin(theta)*np.sin(alpha), a*np.cos(theta)],
[np.sin(theta), np.cos(theta)*np.cos(alpha), -np.cos(theta)*np.sin(alpha), a*np.sin(theta)],
[0, np.sin(alpha), np.cos(alpha), d],
[0, 0, 0, 1]
])
# 计算末端位姿
def end_effector_position(thetas):
T = np.eye(4)
for i in range(6):
T = T @ dh_matrix(a[i], alpha[i], d[i], np.radians(thetas[i]))
return T[:3, 3]
# 目标函数
def objective(thetas):
pos = end_effector_position(thetas)
return np.linalg.norm(pos - target)
# 初始猜测
initial_guess = [0, -90, 0, 180, -90, 0]
# 约束
bounds = [(low, high) for low, high in theta_ranges]
# 优化
result = minimize(objective, initial_guess, bounds=bounds, method='SLSQP')
optimal_thetas = result.x
print("最优关节角度:", optimal_thetas)
print("最小化误差:", result.fun)
# 打印末端位置
end_position = end_effector_position(optimal_thetas)
print("末端位置:", end_position)
技术文档
完整内容请看下方~