题目链接:Deep-ML
需要注意的是,np.diag
的返回值会根据输入参数的类型不同而有所不同:
-
输入为一维数组:
np.diag
会返回一个以输入数组元素为对角线元素的对角矩阵。 -
输入为二维矩阵:
np.diag
会返回输入矩阵的对角线元素组成的一维数组。
import numpy as np
def solve_jacobi(A: np.ndarray, b: np.ndarray, n: int) -> list:
d_a = np.diag(A)
print(d_a)
print(A - d_a)
print(A - np.diag(d_a))
nda = A - np.diag(d_a)
x = np.zeros(len(A[0]))
x_hold = np.zeros(len(A[0]))
for _ in range(n):
for i in range(len(nda)):
x_hold[i] = (b[i] - np.dot(nda[i], x)) / d_a[i]
x = x_hold.copy()
return x
if __name__ == '__main__':
A = [[5, -2, 3], [-3, 9, 1], [2, -1, -7]]
b = [-1, 2, 3]
n = 2
print(solve_jacobi(A, b, n))