聊聊ChatGLM-6B医疗数据微调

news2025/1/11 17:51:48

前言

参考了多个医疗大模型,如扁鹊、灵心等,重新思考了下微调的方案以及数据集的格式;基于ChatGLM/其它LLM整合多种微调方法的非官方实现的框架,审视其数据集格式,以及调试效果,进行微调。
最终基于liucongg/ChatGLM-Finetuning开源框架成功的微调出来我想要的结果。

服务器环境

阿里云PAI平台

开源库下载

在服务器上通过git一键下载即可:
image.png
image.png

ChatGLM-6B下载

直接在服务器上,通过魔塔社区的sdk下载代码一键下载即可:
image.png
我加了一句代码打印出下载地址,然后通过mv命令拷贝到指定路径下。

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('ZhipuAI/ChatGLM-6B')
print(model_dir)


指令数据集准备

数据集的格式严格参考开源库的格式,这里的格式直接参考/data/xxx.json数据格式即可。

{"instruction": "一名年龄在70岁的女性,出现了晕厥、不自主颤抖、情绪不稳等症状,请详细说明其手术治疗和术前准备。", "input": "", "output": "该病需要进行电极导线、脉冲发生器和永久心脏起搏器置入术,并需要使用镇静药物和局麻对病人进行手术治疗。术前准备包括1-3天的时间进行术前检查和生活方式的调整。"}
{"instruction": "一个患者的卵巢小细胞癌转移至其它部位,是否有必要进行手术治疗?", "input": "", "output": "当卵巢小细胞癌转移至其它部位时,手术治疗的效果可能不理想,因此一般不推荐进行手术治疗。针对转移病灶,可以采用化疗、放疗等治疗手段进行综合治疗。"}
{"instruction": "一位60岁男性患者由于肝动脉瘤出现肝功能异常,具体表现为黄疸,该如何诊治?", "input": "", "output": "该患者可能出现了肝动脉瘤并发症之一的梗阻性黄疸,需要进行腹部平片、彩色多普勒超声、CTA、动脉造影等检查后确定诊断,治疗方面应按照病因治疗,如若为肝动脉炎、动脉粥样硬化等病因,应该采取手术治疗,而若是单纯的肝动脉瘤,可以进行介入治疗或手术治疗。"}
{"instruction": "患者男,28岁,关节部位红肿疼痛,排尿困难,近期有过微生物感染史。请问可能患的是什么疾病?如何治疗?", "input": "", "output": "可能患有反应性关节炎。治疗方案可以采用沙利度胺、泼尼松等药物。同时还要注意休息和饮食。"}
{"instruction": "一名患者因腹胀、纳差等症状就诊,检查发现肝大、腹水及肝功能损害,诊断为肝淀粉样变性,请问该患者应该接受哪些治疗方案?", "input": "", "output": "该患者应该接受弥漫性系膜硬化、苯丙氨酸氮芥等治疗方案。"}
{"instruction": "治疗方法上有何不同", "input": "", "output": "急性非ST段抬高型心肌梗死的治疗主要是通过改善生活方式和控制危险因素来预防,紧急情况下可能需要静脉注射血栓溶解药物;而自身免疫性肝炎的治疗则包括药物治疗和手术治疗,如激素、免疫抑制剂、肝移植等"}
{"instruction": "一位中年男性感染了军团杆菌,导致出现了弥漫性血管内凝血、充血性心力衰竭等并发症,应该怎样进行辅助检查和诊断?", "input": "", "output": "首先应该做特殊实验室检查和血常规和生化检查,进一步的辅助诊断可考虑X线检查,X线胸片检查、化验检查、血清学检查以及实验室检查等方法。"}
{"instruction": "胆管癌和偏头痛的主要症状有何区别?", "input": "", "output": "胆管癌的主要症状包括黄疸、肝肿大等消化系统症状,而偏头痛的主要症状是头部疼痛。"}
{"instruction": "胡女士出现了黄疸、恶心、呕吐等症状,可能患了什么疾病?", "input": "", "output": "胡女士可能患有胆道张力低下综合征。建议尽快到内科进行检查,并进行西医和中医治疗。"}
{"instruction": "一位妊娠31周孕妇在家中自行服用草药,随后出现呕吐、腹痛、恶心、疲劳、皮肤瘙痒、黄疸等症状,血液检查显示血清转氨酶升高,交叉免疫电泳检测显示未见明显异常。 ", "input": "", "output": "可能是由于在未咨询医生的情况下自行服用草药导致的急性妊娠期肝内胆汁淤积症。建议及时就医,如需紧急治疗可在医生指导下使用胆酸螯合剂、皮质激素等药物,并密切监测胎儿状态与身体其他部位不适情况。"}

开始训练,按文档准备好脚本 run.sh;根据自己的服务器卡数选择即可,修改模型路径,数据集参数即可。
image.png
脚本内容:
image.png
生成的文件:
image.png
image.png

合并Lora参数文件

需要将Lora微调后的参数文件与原模型参数文件合并,执行脚本即可。

python merge_lora.py

当然要替换下里面的路径参数。最终生成的参数文件:
image.png

推理

执行脚本predict.py文件即可,但里面的代码有些问题,用修改后的即可,同样需要修改路径参数

# -*- coding:utf-8 -*-
# @project: ChatGLM-Finetuning
# @filename: predict
# @author: 刘聪NLP
# @zhihu: https://www.zhihu.com/people/LiuCongNLP
# @contact: logcongcong@gmail.com
# @time: 2023/12/6 20:41
"""
    文件说明:
            
"""
import argparse
import torch
from model import MODE
import os
# 启用CUDA
os.environ['CUDA_VISIBLE_DEVICES'] = '0'

def parse_args():
    parser = argparse.ArgumentParser()
    # Model
    parser.add_argument("--device", type=str, default="0", help="")
    parser.add_argument("--mode", type=str, default="glm", help="")
    parser.add_argument("--model_path", type=str, default="/mnt/workspace/demos/ChatGLM-Finetuning/output-glm/epoch-2-step-262", help="")
    parser.add_argument("--max_length", type=int, default=500, help="")
    parser.add_argument("--do_sample", type=bool, default=True, help="")
    parser.add_argument("--top_p", type=float, default=0.8, help="")
    parser.add_argument("--temperature", type=float, default=0.8, help="")
    return parser.parse_args()


def predict_one_sample(instruction, input, model, tokenizer, args):
    result, _ = model.chat(tokenizer, instruction + input, max_length=args.max_length, do_sample=args.do_sample,
                           top_p=args.top_p, temperature=args.temperature)
    return result


if __name__ == '__main__':
    args = parse_args()
    model = MODE[args.mode]["model"].from_pretrained(args.model_path, device_map="auto",
                                                     torch_dtype=torch.float16)
    tokenizer = MODE[args.mode]["tokenizer"].from_pretrained(args.model_path)
    instruction = "一位年轻女性患者出现了风团性斑块、丘疹等症状,请问此病可以由哪些科室进行治疗?"
    input = ""
    r = predict_one_sample(instruction, input, model, tokenizer, args)
    print(r)

返回结果:
image.png

最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1980593.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

通配符/泛域名HTTPS证书怎么申请?

通配符SSL证书允许您为一个主域名下的所有次级子域名提供加密连接,这非常适用于拥有多个子域名的网站。以下是申请通配符SSL证书的一般步骤: 一、选择证书类型: 确定需要何种类型的通配符SSL证书,如DV(域验证&#x…

黑马头条微服务学习day6-kafka及异步通知文章上下架

文章目录 自媒体文章上下架Kafka概述入门案例分区Kafka高可用设计集群发送类型参数详解消费者详解 SpringBoot集成Kafka传递为消息对象文章上下架功能实现 自媒体文章上下架 Kafka概述 入门案例 &#xff08;1&#xff09;创建kafka-demo项目&#xff0c;导入依赖 <depend…

算法 —— 位运算

目录 位运算常用结论 位运算例题 位1的个数 比特位计算 汉明距离 只出现一次的数字 判定字符是否唯一 丢失的数字 两整数之和 消失的两个数字 进制转换 位运算常用结论 想详细了解位运算的内容可以阅读我的这篇博客&#xff1a;应该背下的位运算 以下我只介绍一些位…

61850 MMS源码(二)

上一篇说了怎么下载&#xff0c;编译和运行mms相关的源码&#xff0c;以及如何抓包。这篇尝试对源码做出一些改动&#xff0c;并实际运行一下。 协议内容厚厚一本书&#xff0c;只是大概看了一下&#xff0c;个人比较习惯从代码入手看逻辑处理&#xff0c;从而理解协议。 我发现…

独立摄影师如何找到自己的第一批客户?

声明&#xff1a;此篇为 ai123.cn 原创文章&#xff0c;转载请标明出处链接&#xff1a;独立摄影师如何找到自己的第一批客户&#xff1f; | AI导航 ai123.cn 嘿&#xff0c;摄影师朋友们&#xff01;咱都知道&#xff0c;想增加目标客户可不简单&#xff0c;推广难、竞争大&am…

Jmeter--http信息头管理器的使用(转载)

本文转载自&#xff1a; Jmeter—什么时候需要配置HTTP信息头管理器以及对应的参数如何输入_信息头管理器中的参数怎么调用-CSDN博客 1、抓包查看Request Headers&#xff08;请求头&#xff09;里Content-Type的信息&#xff0c;如下图&#xff1a; Content-Type的格式为&…

ROS2从入门到精通4-6:路径平滑插件开发案例(以B样条曲线平滑为例)

目录 0 专栏介绍1 ROS2路径平滑器介绍2 平滑器插件编写模板2.1 构造平滑器插件类2.2 注册并导出插件2.3 编译与使用插件 3 基于B样条曲线的路径平滑 0 专栏介绍 本专栏旨在通过对ROS2的系统学习&#xff0c;掌握ROS2底层基本分布式原理&#xff0c;并具有机器人建模和应用ROS2…

了解一下这个基质:粘弹性可编码,organoids培养的好帮手

Dynamic matrices with DNA-encoded viscoelasticity for cell and organoid culture是发表于《nature nanotechnology》的一篇文章&#xff0c;介绍了一种基于DNA的动态交联基质DyNAtrix&#xff0c;用于细胞和类器官培养。DyNAtrix由DNA库与超高分子量聚合物自组装形成&#…

联手体系结构专业委员会:“用户态GPU池化技术”术语发布 | CCF术语快线

本期发布术语热词&#xff1a;用户态GPU池化技术&#xff08;User-space GPU Pooling&#xff09;。 用户态GPU池化技术 作者&#xff1a;陈飞&#xff08;趋动科技&#xff09;张伟韬&#xff08;趋动科技&#xff09;李诚&#xff08;中国科学技术大学&#xff09; 开篇导语…

python使用boto3访问S3对象存储并列出百万级文件对象的存储信息

本文提供了在python3环境里使用boto3访问S3对象存储&#xff0c;并列出百万级文件对象的存储信息的示例代码。 一、测试环境 操作系统和python版本如下&#xff1a; [rootlocalhost boto3]# cat /etc/os-release NAME"openEuler" VERSION"22.03 LTS" I…

【实战指南】轻松上手:部署与应用清华智谱GLM大模型

部署一个自己的大模型&#xff0c;没事的时候玩两下&#xff0c;这可能是很多技术同学想做但又迟迟没下手的事情&#xff0c;没下手的原因很可能是成本太高&#xff0c;近万元的RTX3090显卡&#xff0c;想想都肉疼&#xff0c;又或者官方的部署说明过于简单&#xff0c;安装的时…

GreatSQL 8.0.32-26 今日发布

GreatSQL 8.0.32-26 今日发布 版本信息 发布时间&#xff1a;2024年08月05日 版本号&#xff1a;8.0.32-26, Revision a68b3034c3d 下载链接&#xff1a;https://gitee.com/GreatSQL/GreatSQL/releases/tag/GreatSQL-8.0.32-26 用户手册&#xff1a;https://greatsql.cn/docs…

【知识专栏丨python数分实战】天猫订单数据分析及可视化|taobao天猫订单接口

今天这篇文章将给大家介绍天猫订单数据分析及可视化案例。 import pandas as pdimport numpy as npfrom pyecharts.charts import Pie,Bar,Line,Map,Map3D,Funnelfrom pyecharts import options as optsimport matplotlib.pyplot as pltimport warningsimport seaborn as snsfr…

《刚刚问世》系列初窥篇-Java+Playwright自动化测试-7-元素基础定位方式-下篇 (详细教程)

软件测试微信群&#xff1a;https://bbs.csdn.net/topics/618423372 有兴趣的可以扫码加入 1.简介 上一篇主要是讲解我们日常工作中在使用Playwright进行元素定位的一些比较常用的基础定位方式的理论基础知识以及在什么情况下推荐使用。今天这一篇讲解和分享一下剩下部分的基…

重塑未来体验:边缘计算与云原生的完美邂逅

&#x1f407;明明跟你说过&#xff1a;个人主页 &#x1f3c5;个人专栏&#xff1a;《未来已来&#xff1a;云原生之旅》&#x1f3c5; &#x1f516;行路有良友&#xff0c;便是天堂&#x1f516; 目录 一、引言 1、云原生的兴起 2、边缘计算的兴起 二、边缘计算基础 …

LoadRunner12 添加事务并添加检查点

1、先要添加事务开始函数lr_start_transaction("登陆事务");&#xff0c;在接口上方右击点击-插入-开始事务。输入事务名称&#xff1b; 2、在某个接口想法 右击点击-插入-结束事务&#xff0c;输入事务名称&#xff0c;与开始事务名称要保持一致&#xff0c;lr_end_…

springboot自动装配(源码分析)

利用spi机制发现配置类并注册到spring容器中 以下示例使用springboot:3.2.1版本 相关注解 SpringBootApplication EnableAutoConfiguration AutoConfigurationImportSelector 使用Import导入AutoConfigurationImportSelector&#xff0c;随着springboot启动&#xff0c;会…

工业控制常用的EtherNet/IP、OPC UA协议的标签数据转发到另外的PLC寄存器地址

在工业自动化领域&#xff0c;越来越多的碰到标签方式通讯的设备&#xff0c;常用有CIP(基于EtherNet/IP) 的协议、OPCUA协议等&#xff0c;CIP协议主要是罗克韦尔/AB的PLC、欧姆龙NX/NJ系列的PLC等&#xff0c;OPCUA协议常见于工业机器人、智能焊接设备等。在不具备标签协议接…

AI绘画变现也有新思路,国风带你日进斗金!

在中国的文化传承中&#xff0c;古典的风韵总是能引发无尽的遐想和美感。 在现代化的今天&#xff0c;越来越多的人开始重新审视和欣赏那些古老的中国风&#xff0c;发现其中蕴含的深厚文化底蕴与无与伦比的美感。 特别是在影视、音乐、舞蹈等艺术形式中&#xff0c;国风元素…

【C++】C++特性揭秘:引用与内联函数 | auto关键字与for循环 | 指针空值

C语法相关知识点可以通过点击以下链接进行学习一起加油&#xff01;命名空间缺省参数与函数重载 本章将分享C增加的几种常见特性&#xff0c;主要内容为引用与内联函数 | auto关键字与for循环 | 指针空值&#xff0c;这些知识看似很多&#xff0c;实际也不少。本章篇幅长&#…