全连接卷积神经网络(FCN)
FCN是用来深度网络来做语义分割的奠基性工作,用转置卷积层来替换CNN最后的全连接层,从而可以实现对每个像素的预测
CNN(卷积神经网络)可以认为是一个预训练好的模型。CNN的最后一层是全局平均池化层,无论是什么形状的输入,最后输出都是1*1的,这对像素预测不太好
1 × 1 1\times 1 1×1卷积层用来变换输出通道,降低通道数,转置卷积层用于把图像放大。
1.代码实现
1.1FCN网络的实现(使用预训练模型)
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
pretrained_net = torchvision.models.resnet18(weights=torchvision.models.ResNet18_Weights.IMAGENET1K_V1)
print(list(pretrained_net.children())[-3:]) # 看一下最后两层:全局平均池化层和全连接层
net = nn.Sequential(*list(pretrained_net.children())[:-2]) # 丢掉后面的几层
X = torch.rand(size=(1, 3, 320, 480))
print(net(X).shape) #发现高宽均减少至原来的1/32,即10和15,
num_classes = 21
# 1 * 1卷积层,变换输出通道为类别数
net.add_module('final_conv', nn.Conv2d(512, num_classes, kernel_size=1))
# 转置卷积层,我们想让高宽变为32倍,如果步幅为s,填充为s/2(假设是整数),且卷积核的高和宽为2s,那么转置后的矩阵会放大s倍
net.add_module('transpose_conv', nn.ConvTranspose2d(num_classes, num_classes,
kernel_size=64, padding=16, stride=32))
1.2 初始化转置卷积层
有时我们需要将图像放大,即上采样(unsampling)。双线性插值(bilinear interpolation)是常用的上采样方式之一,它也经常用于初始化转置卷积层。
双线性插值
给定输入图像,需要计算上采样输出图像上的每个像素
- 将输出图像的坐标(x,y)映射到输入图像的坐标 ( x ′ , y ′ ) (x',y') (x′,y′)上。例如,根据输入与输出额尺寸之比来映射,请注意,映射后的 x ′ , y ′ x',y' x′,y′仍然是实数
- 在输入图像上找到离坐标 ( x ′ , y ′ ) (x',y') (x′,y′)最近的4个像素
- 输出图像在坐标 ( x , y ) (x,y) (x,y)上的像素一句输入图像上这4个像素及其与 ( x ′ , y ′ ) (x',y') (x′,y′)的相对距离来计算
'''初始化转置卷积层'''
#
def bilinear_kernel(in_channels, out_channels, kernel_size):
# 对于奇数尺寸的核,中心位置为factor-1,对于偶数尺寸的核,中心位置为factor-0.5
factor = (kernel_size + 1) // 2
if kernel_size % 2 == 1:
center = factor - 1
else:
center = factor - 0.5
# 生成用于计算双线性核的网格
#og 是一个包含两个张量的元组,一个张量是行向量,一个张量是列向量。
og = (torch.arange(kernel_size).reshape(-1, 1),
torch.arange(kernel_size).reshape(1, -1))
# 计算双线性插值的过滤器,点到中心距离,比并且归一化到[0,1]的区间 形状为kernel_size 8* kernel_size
filt = (1 - torch.abs(og[0] - center) / factor) * \
(1 - torch.abs(og[1] - center) / factor)
# 初始化权重张量
weight = torch.zeros((in_channels, out_channels,
kernel_size, kernel_size))
# 将过滤器应用到权重张量的每个输入通道和输出通道对
weight[range(in_channels), range(out_channels), :, :] = filt
return weight
conv_trans = nn.ConvTranspose2d(3, 3, kernel_size=4, padding=1, stride=2,
bias=False)
# 卷积核用双线性插值初始化
conv_trans.weight.data.copy_(bilinear_kernel(3, 3, 4))
img = torchvision.transforms.ToTensor()(d2l.Image.open('../img/catdog.jpg'))
X = img.unsqueeze(0)
Y = conv_trans(X)
out_img = Y[0].permute(1, 2, 0).detach()
d2l.set_figsize()
print('input image shape:', img.permute(1, 2, 0).shape)
d2l.plt.imshow(img.permute(1, 2, 0));
print('output image shape:', out_img.shape)
#input image shape: torch.Size([2160, 3840, 3])
#output image shape: torch.Size([4320, 7680, 3])
d2l.plt.imshow(out_img);
d2l.plt.show()
W = bilinear_kernel(num_classes, num_classes, 64)
net.transpose_conv.weight.data.copy_(W);
# filt 示例
(1 - torch.abs(og[0] - center) / factor) = tensor([[0.3333],
[0.6667],
[1.0000],
[0.6667],
[0.3333]])
(1 - torch.abs(og[1] - center) / factor) = tensor([[0.3333, 0.6667, 1.0000, 0.6667, 0.3333]])
filt = (1 - torch.abs(og[0] - center) / factor) * (1 - torch.abs(og[1] - center) / factor)
filt = tensor([[0.1111, 0.2222, 0.3333, 0.2222, 0.1111],
[0.2222, 0.4444, 0.6667, 0.4444, 0.2222],
[0.3333, 0.6667, 1.0000, 0.6667, 0.3333],
[0.2222, 0.4444, 0.6667, 0.4444, 0.2222],
[0.1111, 0.2222, 0.3333, 0.2222, 0.1111]])
1.3 训练
# crop_size 设定训练图片的大小
batch_size, crop_size = 32, (320, 480)
train_iter, test_iter = d2l.load_data_voc(batch_size, crop_size)
#使用转置卷积层的通道来预测像素的类别,所以需要在损失计算中指定通道维。
def loss(inputs, targets):
# 对高做平均,对宽做平均,做两次均值,得到一个值
return F.cross_entropy(inputs, targets, reduction='none').mean(1).mean(1)
num_epochs, lr, wd, devices = 5, 0.001, 1e-3, d2l.try_all_gpus()
trainer = torch.optim.SGD(net.parameters(), lr=lr, weight_decay=wd)
d2l.train_ch13(net, train_iter, test_iter, loss, trainer, num_epochs, devices)
d2l.plt.show()
def predict(img):
X = test_iter.dataset.normalize_image(img).unsqueeze(0)
pred = net(X.to(devices[0])).argmax(dim=1)
return pred.reshape(pred.shape[1], pred.shape[2])
def label2image(pred):
colormap = torch.tensor(d2l.VOC_COLORMAP, device=devices[0])
X = pred.long()
return colormap[X, :]
voc_dir = d2l.download_extract('voc2012', 'VOCdevkit/VOC2012')
test_images, test_labels = d2l.read_voc_images(voc_dir, False)
n, imgs = 4, []
for i in range(n):
crop_rect = (0, 0, 320, 480)
X = torchvision.transforms.functional.crop(test_images[i], *crop_rect)
pred = label2image(predict(X))
imgs += [X.permute(1,2,0), pred.cpu(),
torchvision.transforms.functional.crop(
test_labels[i], *crop_rect).permute(1,2,0)]
d2l.show_images(imgs[::3] + imgs[1::3] + imgs[2::3], 3, n, scale=2);
d2l.plt.show()
loss 0.413, train acc 0.870, test acc 0.853