【精选】通信与感知(ISAC)必读好文

news2024/10/2 14:24:08

微信公众号:EW Frontier 个人博客:106.54.201.174 QQ交流群:949444104

简介

通信与感知(ISAC)也被称为联合雷达通信 (JRC) / 联合通信和雷达传感 (JCAS) / 双功能雷达通信 (DFRC)

定义:将传感和通信系统集成在一起的设计模式和相应的使能技术,有效利用拥挤的无线/硬件资源,甚至实现互惠互利。

目录

1. 概述和教程

1.1 基本概念

1.2 信号处理

1.3 通信与网络

1.4 移动计算

2. 基础理论与性能分析

3. 信号处理--以通信为中心

3.1 标准化波形

3.2 收发器设计

3.3 基础设施增强

3.4 资源和干扰管理

4. 信号处理--以传感为中心

4.1 波形设计

4.2 传感数据处理

5. 信号处理 - 联合设计

6. 联网

6.1 雷达联网

6.2 传感器联网

6.3 ISAC 网络

7. 频谱共享

8. 移动计算--WiFi 传感

8.1 人类活动识别

8.2 无线成像

8.3 控制流

9. 应用与演示

9.1 环境监测

9.2 多功能网络

9.3 健康和老年人护理

9.4 遥感

9.5 现场指定无线电地图

9.6 同步定位和制图

9.7 安全与隐私

9.8 演示

1.概述和教程

1.1 基本概念

1 . Integrated Sensing and Communications: Towards Dual-functional Wireless Networks for 6G and Beyond. IEEE JSAC, 2022. Journal.F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, S. Buzzi

https://ieeexplore.ieee.org/document/9737357

2 . Integrating Sensing and Communications for Ubiquitous IoT: Applications, Trends and Challenges. IEEE Network,2021. Magazine.Y. Cui, F. Liu, X. Jing, J. Mu

https://ieeexplore.ieee.org/document/9606831

3 . Joint Radar and Communication Design: Applications, State-of-the-Art, and the Road Ahead. IEEE TCOM, 2020.Journal. CodeF. Liu, C. Masouros, A. P. Petropulu, H. Griffiths, L. Hanzo

https://ieeexplore.ieee.org/document/8999605

4 . Waveforhttps://ieeexplore.ieee.org/document/9606831/m Design and Signal Processing Aspects for Fusion of Wireless Communications and Radar Sensing.Proceedings of the IEEE, 2011. Magazine.C. Sturm, W. Wiesbeck

https://ieeexplore.ieee.org/document/5776640

5 . Seventy Years of Radar and Communications: The road from separation to integration. IEEE SPM, 2023.Magazine.F. Liu, L. Zheng, Y. Cui, C. Masouros, A. P. Petropulu, H. Griffiths, Y. C. Eldar

https://ieeexplore.ieee.org/document/10188491

6 . Dual-Function Radar Communication Systems: A Solution to the Spectrum Congestion Problem. IEEE SPM, 2019.Magazine.A. Hassanien, M. G. Amin, E. Aboutanios, B. Himed

https://ieeexplore.ieee.org/document/8828023

7 . Radar-Communications Convergence: Coexistence, Cooperation, and Co-Design. IEEE TCCN, 2017. Journal A. R. Chiriyath, B. Paul, D. W. Bliss

https://ieeexplore.ieee.org/document/7855671

1.2 信号处理

1 . An Overview of Signal Processing Techniques for Joint Communication and Radar Sensing. IEEE JSTSP, 2021.Journal.J. A. Zhang, F. Liu, C. Masouros, R. W. Heath, Z. Feng, L. Zhang, A. Petropulu

https://ieeexplore.ieee.org/document/9540344/

2 . Toward Millimeter-Wave Joint Radar Communications: A Signal Processing Perspective. IEEE SPM, 2019.Magazine.K. V. Mishra, M. R. Bhavani Shankar, V. Koivunen, B. Ottersten, S. A. Vorobyov

https://ieeexplore.ieee.org/document/8828030

3 . Joint Radar-Communications Strategies for Autonomous Vehicles Combining Two Key Automotive Technologies. IEEE SPM, 2020. Magazine.D. Ma, N. Shlezinger, T. Huang, Y. Liu, Y. C. Eldar

https://ieeexplore.ieee.org/document/9127852

4 . Signaling Strategies for Dual-function Radar Communications: An Overview. IEEE AESM, 2016. Magazine.A. Hassanien, M. G. Amin, Y. D. Zhang, F. Ahmad

https://ieeexplore.ieee.org/document/7746569

5 . Radar and Communication Coexistence: An Overview: A Review of Recent Methods. IEEE SPM, 2019. Magazine.L. Zheng, M. Lops, Y. C. Eldar, X. Wang

https://ieeexplore.ieee.org/document/8828016

6 . MIMO Radar for Advanced Driver-Assistance Systems and Autonomous Driving: Advantages and Challenges.IEEE SPM, 2020. Magazine.S. Sun, A. P. Petropulu, H. V. Poor

https://ieeexplore.ieee.org/document/9127853

7 . Survey of RF Communications and Sensing Convergence Research. IEEE ACCESS, 2016. Journal.B. Paul, A. R. Chiriyath, D. W. Bliss

https://ieeexplore.ieee.org/document/7782415

1.3 通信与网络

1 . Enabling Joint Communication and Radio Sensing in Mobile Networks--A Survey. IEEE COMST, 2022. Journal.J. Zhang, Md. Rahman, K. Wu, X. Huang, Y. Guo, S. Chen, J. Yuan

https://ieeexplore.ieee.org/abstract/document/9585321

2 . A Tutorial on Joint Radar and Communication Transmission for Vehicular Networks - Part I, II, and III. IEEE COMML, 2020. Letter.F. Liu, C. Masouros

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9201355

3 . Perceptive Mobile Network: Cellular Networks With Radio Vision via Joint Communication and Radar Sensing.IEEE VTM, 2020. Magazine.A. Zhang, M. L. Rahman, X. Huang, Y. J. Guo, S. Chen, R. W. Heath

https://ieeexplore.ieee.org/document/9296833

4 . Leveraging Sensing at the Infrastructure for mmWave Communication. IEEE COMMAG, 2020. Magazine.A. Ali, N. Gonzalez-Prelcic, R. W. Heath, A. Ghosh

https://ieeexplore.ieee.org/document/9162000

5 . Internet of Radars: Sensing versus Sending with Joint Radar-Communications. IEEE COMMAG, 2020. Magazine.O. B. Akan, M. Arik

https://ieeexplore.ieee.org/document/9214381

6 . Full Duplex Radio/ Radar Technology: The Enabler for Advanced Joint Communication and Sensing. IEEE WCM,2021. Magazine.C. B. Barneto, S. D. Liyanaarachchi, M. Heino, T. Riihonen, M. Valkama

https://ieeexplore.ieee.org/abstract/document/9363029

7 . Communications and Sensing: An Opportunity for Automotive Systems. IEEE SPM, 2020. Magazine R. W. Heath

https://ieeexplore.ieee.org/document/9129848

1.4 移动计算

1 . WiFi Sensing with Channel State Information: A Survey. ACM CSUR, 2019. Journal.Y. Ma, G. Zhou, S. Wang

https://dl.acm.org/doi/abs/10.1145/3310194

2 . Wireless Sensing for Human Activity: A Survey. IEEE COMST, 2019. JournalJ. Liu, H. Liu, Y. Chen, Y. Wang, C. Wang

https://ieeexplore.ieee.org/document/8794643

3 . Future Millimeter-Wave Indoor Systems: A Blueprint for Joint Communication and Sensing. IEEE Computer, 2019.MagazineM. Alloulah, H. Huang

https://ieeexplore.ieee.org/document/8747215

4 . Joint Design of Sensing and Communication Systems for Smart Homes. IEEE Network, 2020. Magazine Q. Huang, H. Chen, Q. Zhang

https://ieeexplore.ieee.org/document/9143269

5 . Device-Free Wireless Sensing: Challenges, Opportunities, and Applications. IEEE Network, 2018. Magazine J. Wang, Q. Gao, M. Pan, Y. Fang

https://ieeexplore.ieee.org/abstract/document/8284052

2.基础理论与性能分析

1 . **On the Fundamental Tradeoff of Integrated Sensing and Communications Under Gaussian Channels.*Journal* Y. Xiong, F. Liu, Y. Cui, W. Yuan, T. X. Han, G. Caire

https://ieeexplore.ieee.org/abstract/document/10147248

2 . Joint State Sensing and Communication: Optimal Tradeoff for a Memoryless Case. IEEE ISIT, 2018. Conference M. Kobayashi, G. Caire, G. Kramer

https://ieeexplore.ieee.org/document/8437621

3 . Joint Sensing and Communication over Memoryless Broadcast Channels. IEEE ISIT, 2020. Conference M.Ahmadipour, M.Wigger, M. Kobayashi

https://ieeexplore.ieee.org/abstract/document/9457571

4 . A Survey on Fundamental Limits of Integrated Sensing and Communication. Arxiv, 2021. Journal A. Liu, Z. Huang, M. Li, Y. Wan, W. Li, T. X. Han, C. Liu, R. Du, D. T. K. Ping, J. Liu, Y. Shen, F. Colone, K. Chetty

https://arxiv.org/abs/2104.09954

5 . Joint Transmission and State Estimation: A Constrained Channel Coding Approach. IEEE TIT, 2011. Journal W. Zhang, S. Vedantam, U. Mitra

https://ieeexplore.ieee.org/document/6034756

6 . Inner Bounds on Performance of Radar and Communications Co-Existence. IEEE TSP, 2016. Journal A. R. Chiriyath, B. Paul, G. M. Jacyna, D. W. Bliss

https://ieeexplore.ieee.org/document/7279172

7 . On the Capacity of the AWGN Channel With Additive Radar Interference. IEEE TCOM, 2017. Journal S. Shahi, D. Tuninetti, N. Devroye

https://ieeexplore.ieee.org/document/8070342

8 . Performance Gains From Cooperative MIMO Radar and MIMO Communication Systems. IEEE SPL, 2018. Letter Q. He, Z. Wang, J. Hu, R. S. Blum

https://ieeexplore.ieee.org/document/8531782

9 . A Perspective on Degrees of Freedom for Radar in Radar-Communication Interference Channel. IEEE ACSSC, 2018. Conference Y. Cui, V. Koivunen, X. Jing

https://ieeexplore.ieee.org/document/8645069

1 0 . Performance Tradeoffs of Joint Radar-Communication Networks. IEEE WCL, 2018. Letter P. Ren, A. Munari, M. Petrova

https://ieeexplore.ieee.org/document/8436015

1 1 . Analysis of An LTE Waveform for Radar Applications. IEEE RADAR, 2014. Conference A. Evers, J. A. Jackson

https://ieeexplore.ieee.org/document/6875584

1 2 . Performance Tradeoff in a Unified Passive Radar and Communications System. IEEE SPL, 2017. Journal B. K. Chalise, M. G. Amin, B. Himed

https://ieeexplore.ieee.org/document/7962141

1 3 . Massive MIMO Radar for Target Detection. IEEE TSP, 2020. Journal S. Fortunati, L. Sanguinetti, F. Gini, M. S. Greco, B. Himed

https://ieeexplore.ieee.org/document/8962251

1 4 . The Shannon Channel Capacity of A Radar System. IEEE ACSSC, 2003. Conference P. Bidigare

https://ieeexplore.ieee.org/document/1197159

3. 信号处理--以通信为中心

3.1 标准化波形

1 . IEEE 802.11ad-Based Radar: An Approach to Joint Vehicular Communication-Radar System. IEEE TVT, 2017.Journal P. Kumari, J. Choi, N. González-Prelcic, R. W. Heath

https://ieeexplore.ieee.org/document/8114253

2 . Full-Duplex OFDM Radar With LTE and 5G NR Waveforms: Challenges, Solutions, and Measurements. IEEE TMTT, 2019. Journal C. B. Barneto, T. Riihonen, M. Turunen, L. Anttiila, M. Fleischer, K. Stadius, J. Ryynanen, M, Valkama

https://ieeexplore.ieee.org/document/8805161

3 . Optimized Waveforms for 5G–6G Communication with Sensing: Theory, Simulations and Experiments. IEEE TWC, 2021. Journal S. D. Liyanaarachchi, T. Riihonen, C. B. Barneto, M. Valkama

https://ieeexplore.ieee.org/abstract/document/9468975

4 . LoRadar: Enabling Concurrent Radar Sensing and LoRa Communication. IEEE TMC, 2020. Journal Q. Huang, Z. Luo, J. Zhang, W. Wang, Q. Zhang

https://ieeexplore.ieee.org/document/9248648

3.2 收发器设计

1 . Uplink Sensing in Perceptive Mobile Networks with Asynchronous Transceivers. IEEE TSP, 2020. Journal Z. Ni, J. A. Zhang, X. Huang, K. Yang, J. Yuan

https://ieeexplore.ieee.org/document/9349171

2 . A mmWave Automotive Joint Radar-Communications System. IEEE TAES, 2019. Journal S. H. Dokhanchi, B. S. Mysore, K. V. Mishra, B. Ottersten

https://ieeexplore.ieee.org/document/8638509

3 . Multifunctional Transceiver for Future Radar Sensing and Radio Communicating Data-Fusion Platform. IEEE ACCESS, 2016. Journal J. Moghaddasi, K. Wu

https://ieeexplore.ieee.org/document/7409935

4 . Transmit Sequence Design for Dual-Function Radar-Communication System With One-Bit DACs. IEEE TWC, 2021. Journal Z. Cheng, S. Shi, Z. He, B. Liao

https://ieeexplore.ieee.org/abstract/document/9399801

5 . A Dual-Functional Massive MIMO OFDM Communication and Radar Transmitter Architecture. IEEE TVT, 2020. Journal M. Temiz, E. Alsusa, M. W. Baidas

https://ieeexplore.ieee.org/document/9226446

6 . Hybrid Beamforming for Multi-carrier Dual-Function Radar-Communication System. IEEE TCCN, 2021. Journal Z. Cheng, Z. He, B. Liao

https://ieeexplore.ieee.org/abstract/document/9366836

7 . Multifunctional Transceiver for Future Intelligent Transportation Systems. IEEE TMTT, 2011. Journal L. Han, K. Wu

https://ieeexplore.ieee.org/document/5759762

8 . RF Front-End Challenges for Joint Communication and Radar Sensing. IEEE JC&S, 2021. Conference F. Bozorgi, P. Sen, A. N. Barreto, G. Fettweis

https://ieeexplore.ieee.org/document/9376387

3.3 基础设施增强

1 . Leveraging Sensing at the Infrastructure for mmWave Communication. IEEE COMMAG, 2020. Magazine A. Ali, N. Gonzalez-Prelcic, R. W. Heath, A. Ghosh

https://ieeexplore.ieee.org/document/9162000

2 . Framework for a Perceptive Mobile Network Using Joint Communication and Radar Sensing. IEEE TAES, 2019. Journal M. L. Rahman, J. A. Zhang, X. Huang, Y. J. Guo, R. W. Heath

https://ieeexplore.ieee.org/document/8827589

3 . Radar-assisted Predictive Beamforming for Vehicular Links: Communication Served by Sensing. IEEE TWC,2021. Journal F. Liu, W. Yuan, C. Masouros, J. Yuan

https://ieeexplore.ieee.org/document/9171304

4 . Bayesian Predictive Beamforming for Vehicular Networks: A Low-Overhead Joint Radar-Communication Approach. IEEE TWC, 2021. Journal W. Yuan, F. Liu, C. Masouros, J. Yuan, D. W. K. Ng, N. González-Prelcic

https://ieeexplore.ieee.org/abstract/document/9246715

5 . Passive Radar at the Roadside Unit to Configure Millimeter Wave Vehicle-to-Infrastructure Links. IEEE TVT, 2020.Journal A. Ali, N. González-Prelcic, A. Ghosh

https://ieeexplore.ieee.org/abstract/document/9209195

6 . Toward Environment-Aware 6G Communications via Channel Knowledge Map. IEEE WCM, 2021. Journal Y. Zeng, X. Xu

https://ieeexplore.ieee.org/document/7888145

7 . Radar Aided Beam Alignment in MmWave V2I Communications Supporting Antenna Diversity. IEEE ITA, 2017.Conference N. González-Prelcic, R. Méndez-Rial, R. W. Heath

https://ieeexplore.ieee.org/document/7888145

3.4 资源和干扰管理

1 . MU-MIMO Communications With MIMO Radar: From Co-Existence to Joint Transmission. IEEE TWC, 2018. Journal. F. Liu, C. Masouros, A. Li, H. Sun, L. Hanzo

https://ieeexplore.ieee.org/document/8288677

2 . Mutual Information based Radar Waveform Design for Joint Radar and Cellular Communication Systems. IEEE ICASSP, 2016. Conference M. Bică, K. Huang, V. Koivunen, U. Mitra

https://ieeexplore.ieee.org/document/7472362

3 . Joint Subcarrier Assignment and Power Allocation Strategy for Integrated Radar and Communications System Based on Power Minimization. IEEE Sensor Journal, 2019. Journal C. Shi, F. Wang, S. Salous, J. Zhou

https://ieeexplore.ieee.org/document/8804235

4 . Power Allocation and Co-Design of Multicarrier Communication and Radar Systems for Spectral Coexistence. IEEE TSP, 2019. Journal F. Wang, H. Li, M. A. Govoni

https://ieeexplore.ieee.org/document/8728046

5 . Radar Waveform Optimization for Target Parameter Estimation in Cooperative Radar-Communications Systems. IEEE TAES, 2018. Journal M. Bică, V. Koivunen

https://ieeexplore.ieee.org/document/8561147

6 . Multicarrier Radar-communications Waveform Design for RF Convergence and Coexistence. IEEE ICASSP, 2019. Conference M. Bică, V. Koivunen

https://ieeexplore.ieee.org/document/8683655

7 . On Mutual Interference Cancellation in a MIMO OFDM Multiuser Radar-Communication Network. IEEE TVT, 2017. Journal Y. L. Sit, B. Nuss, T. Zwick

https://ieeexplore.ieee.org/document/8169087

8 . Constrained Utility Maximization in Dual-Functional Radar-Communication Multi-UAV Networks. IEEE TCOM, 2020. Journal X. Wang, Z. Fei, J. Andrew Zhang, J. Huang, J. Yuan

https://ieeexplore.ieee.org/document/9293257

9 . Distributed Dual-Function Radar-Communication MIMO System with Optimized Resource Allocation. IEEE RadarConf, 2019. Journal A. Ahmed, Y. D. Zhang, B. Himed

https://ieeexplore.ieee.org/abstract/document/8835674

1 0 . Low Probability of Intercept-Based Optimal Power Allocation Scheme for an Integrated Multistatic Radar and Communication System. IEEE Sensor Journal, 2019. Journal C. Shi, F. Wang, M. Sellathurai, J. Zhou, S. Salous

https://ieeexplore.ieee.org/document/8793158

1 1 . Resource Allocation for a Wireless Powered Integrated Radar and Communication System. IEEE WCL, 2018. Letter Y. Zhou, H. Zhou, F. Zhou, Y. Wu, V. C. M. Leung

https://ieeexplore.ieee.org/document/8454491

1 2 . Bandwidth Sharing and Scheduling for Multimodal Radar with Communications and Tracking. IEEE SAM, 2012. Conference S. S. Bhat, R. M. Narayanan, M. Rangaswamy

https://ieeexplore.ieee.org/document/6250476

4. 信号处理--以传感为中心

4.1 波形设计

1 . Dual-Function Radar-Communications: Information Embedding Using Sidelobe Control and Waveform Diversity. IEEE TSP, 2015. Journal A. Hassanien, M. G. Amin, Y. D. Zhang, F. Ahmad

https://ieeexplore.ieee.org/document/7347464

2 . Simultaneous Radar and Communications Emissions from a Common Aperture, Part I,II. IEEE RadarConf, 2017. Conference, Conference P. M. McCormick, S. D. Blunt, J. G. Metcalf

https://ieeexplore.ieee.org/abstract/document/7944480

3 . MAJoRCom: A Dual-Function Radar Communication System Using Index Modulation. IEEE TSP, 2020. Journal T. Huang, N. Shlezinger, X. Xu, Y. Liu, Y. C. Eldar

https://ieeexplore.ieee.org/document/9093221

4 . Waveform Design and Accurate Channel Estimation for Frequency-Hopping MIMO Radar-Based Communications. IEEE TCOM, 2020. Journal K. Wu, J. Andrew Zhang, X. Huang, Y. Jay Guo, R. W. Heath

https://ieeexplore.ieee.org/document/9241739

5 . Intrapulse Radar-Embedded Communications. IEEE TAES, 2010. Journal S. D. Blunt, P. Yatham, J. Stiles

https://ieeexplore.ieee.org/document/5545182

6 . Intrapulse Radar-embedded Communications Via Multiobjective Optimization. IEEE TAES, 2015. Journal D. Ciuonzo, A. De Maio, G. Foglia, M. Piezzo

https://ieeexplore.ieee.org/document/7376230

7 . A Novel Radar Waveform Compatible with Communication. ICST ICCPS, 2011. Conference X. Chen, X. Wang, S. Xu, J. Zhang

https://ieeexplore.ieee.org/document/6092272

8 . Spatial Modulation for Joint Radar-Communications Systems: Design, Analysis, and Hardware Prototype. IEEE TVT, 2021. Journal D. Ma, N. Shlezinger, T. Huang, Y. Shavit, M. Namer, Y. Liu, Y. C. Eldar

https://ieeexplore.ieee.org/abstract/document/9345999

9 . Enabling Communication via Automotive Radars: An Adaptive Joint Waveform Design Approach. IEEE INFOCOM, 2020. Conference C. D. Ozkaptan, E. Ekici, O. Altintas

https://ieeexplore.ieee.org/document/9155527

1 0 . Reliable Frequency-Hopping MIMO Radar-based Communications with Multi-Antenna Receiver. IEEE TCOM, 2021. Journal K. Wu, J. Andrew Zhang, X. Huang, Y. Jay Guo, J. Yuan

https://ieeexplore.ieee.org/abstract/document/9427572

1 1 . Fusion of radar sensing and wireless communications by embedding communication signals into the radar transmit waveform. IET RSN, 2018. Journal Z. Geng, R. Xu, H. Deng, B. Himed

https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/iet-rsn.2017.0405

1 2 . Opportunistic Sharing Between Rotating Radar and Cellular. IEEE JSAC, 2012. Journal R. Saruthirathanaworakun, J. M. Peha, L. M. Correia

https://ieeexplore.ieee.org/document/6331681

1 3 . Communications-Inspired Sensing: a Case Study on Waveform Design. IEEE TSP, 2009. Journal W. Zhang, L. Yang

https://ieeexplore.ieee.org/document/5184909

4.2 感知数据处理

1 . Radar Signal Processing for Elderly Fall Detection: The Future for In-home Monitoring. IEEE SPM, 2016. Magazine M. G. Amin, Y. D. Zhang, F. Ahmad, K. C. D. Ho

https://ieeexplore.ieee.org/document/7421368

2 . Signal Processing for Passive Radar Using OFDM Waveforms . IEEE JSTSP, 2010. Journal C. R. Berger, B. Demissie, J. Heckenbach, P. Willett, S. Zhou

https://ieeexplore.ieee.org/document/5393298

3 . Radar Signal Processing for Sensing in Assisted Living: The Challenges Associated With Real-Time Implementation of Emerging Algorithms. IEEE SPM, 2019. Magazine J.L. Kernec, F. Fioranelli, C. Ding, H. Zhao, L. Sun, H. Hong, J. Lorandel, O. Romain

https://ieeexplore.ieee.org/document/8746868

5. 信号处理 - 联合设计

1 . Toward Dual-functional Radar-Communication Systems: Optimal Waveform Design. IEEE TSP, 2018. Journal. F. Liu, L. Zhou, C. Masouros, A. Li, W. Luo, A. Petropulu

https://ieeexplore.ieee.org/document/8386661

2 . On the Effectiveness of OTFS for Joint Radar Parameter Estimation and Communication. IEEE TWC, 2020. Journal L. Gaudio, M. Kobayashi, G. Caire, G. Colavolpe

https://ieeexplore.ieee.org/document/9109735

3 . Multibeam for Joint Communication and Radar Sensing Using Steerable Analog Antenna Arrays. IEEE TVT, 2018. Journal J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, R. W. Heath

https://ieeexplore.ieee.org/document/8550811

4 . Joint Transmit Beamforming for Multiuser MIMO Communications and MIMO Radar. IEEE TSP, 2020. Journal X. Liu, T. Huang, N. Shlezinger, Y. Liu, J. Zhou, Y. C.

https://ieeexplore.ieee.org/document/9124713

5 . Adaptive Virtual Waveform Design for Millimeter-Wave Joint Communication–Radar. IEEE TSP, 2019. Journal P. Kumari, S. A. Vorobyov, R. W. Heath

https://ieeexplore.ieee.org/document/8917703

6 . Adaptive OFDM Integrated Radar and Communications Waveform Design Based on Information Theory. IEEE COMML, 2017. Letter Y. Liu, G. Liao, J. Xu, Z. Yang, Y. Zhang

https://ieeexplore.ieee.org/abstract/document/7970102

7 . Spatio-Temporal Power Optimization for MIMO Joint Communication and Radio Sensing Systems with Training Overhead.IEEE TVT, 2020. Journal X. Yuan, Z. Feng, A. Zhang, W. Ni, R. P. Liu, Z. Wei, C. Xu

https://ieeexplore.ieee.org/document/9303435

8 . On Unified Vehicular Communications and Radar Sensing in Millimeter-Wave and Low Terahertz Bands. IEEE WCM, 2019. Magazine V. Petrov, G. Fodor, J. Kokkoniemi, D. Moltchanov, J. Lehtomaki, S. Andreev, Y. Koucheryavy, M. Juntti, M. Valkama

https://ieeexplore.ieee.org/document/8722599

9 . Dual-Use Signal Design for Radar and Communication via Ambiguity Function Sidelobe Control. IEEE TVT, 2020. Journal J. Yang, G. Cui, X. Yu, L. Kong

https://ieeexplore.ieee.org/document/9119137

1 0 . Joint MIMO Communication and MIMO Radar Under Different Practical Waveform Constraints. IEEE TVT, 2020. Journal X. He, L. Huang

https://ieeexplore.ieee.org/document/9256994

1 1 . Constrained Utility Maximization in Dual-Functional Radar-Communication Multi-UAV Networks. IEEE TCOM,2020. Journal X. Wang, Z. Fei, J. Andrew Zhang, J. Huang, J. Yuan

https://ieeexplore.ieee.org/document/9293257

1 2 . Joint Radar-Communication Waveform Designs Using Signals From Multiplexed Users. IEEE TCOM, 2020. Journal N. Cao, Y. Chen, X. Gu, W. Feng

https://ieeexplore.ieee.org/document/9091840

1 3 . Low-Complexity Beamformer Design for Joint Radar and Communications Systems. IEEE COMML, 2020. Letter F. Dong, W. Wang, Z. Hu, T. Hui

https://ieeexplore.ieee.org/document/9201077

1 4 . Joint Beamforming Design for Extended Target Estimation and Multiuser Communication. IEEE RadarConf, 2020. Conference F. Liu, C. Masouros

https://ieeexplore.ieee.org/document/9266710

1 5 . iRDRC: An Intelligent Real-time Dual-functional Radar-Communication System for Automotive Vehicles. IEEE WCL, 2020. Letter N. Q. Hieu, D. T. Hoang, N. C. Luong, D. Niyato

https://ieeexplore.ieee.org/document/9162145

1 6 . Joint Radar-Communication With Cyclic Prefixed Single Carrier Waveforms. IEEE TVT, 2020. Journal Y. Zeng, Y. Ma, S. Sun

https://ieeexplore.ieee.org/document/9005192

1 7 . Constrained Waveform Design for Dual-Functional MIMO Radar-Communication System. SP, 2020. Journal S. Shi ,Z. Wang ,Z. He, Z. Cheng

https://www.sciencedirect.com/science/article/abs/pii/S0165168420300736

1 8 . Integrated Radar and Communication Waveform Design Based on a Shared Array. SP, 2020. Journal M. Jiang, G. Liao, Z. Yang, Y. Liu, Y. Chen

https://www.sciencedirect.com/science/article/abs/pii/S0165168420305004

1 9 . Co-design of Joint Radar and Communications Systems utilizing Frequency Hopping Code Diversity. IEEE RadarConf, 2019. Conference X. Wang, J. Xu

https://ieeexplore.ieee.org/document/8835576

2 0 . Dual-Functional Radar Waveforms without Remodulation. IEEE RADAR, 2019. Conference Y. Dong, G. A. Fabrizio, M. G. Amin more

https://ieeexplore.ieee.org/document/8835809

21 . Optimization and Quantization of Multibeam Beamforming Vector for Joint Communication and Radio Sensing. IEEE TCOM, 2019. Journal Y. Luo, J. A. Zhang, X. Huang, W. Ni, J. Pan

https://ieeexplore.ieee.org/document/8738892

22 . Joint Radar-Communications Co-Use Waveform Design Using Optimized Phase Perturbation. IEEE TAES, 2019. Journal S. Zhou, X. Liang, Y. Yu, H. Liu

https://ieeexplore.ieee.org/document/8688653

23 . Dual-Function Radar-Communication System Design Via Sidelobe Manipulation Based On FDA Butler Matrix. IEEE AWPL, 2019. Letter S. Y. Nusenu, S. Huaizong, P. Ye, W. Xuehan, A. Basit

https://ieeexplore.ieee.org/document/8618310

24 . Multibeam for Joint Communication and Radar Sensing Using Steerable Analog Antenna Arrays. IEEE TVT, 2018. Journal J. A. Zhang, X. Huang, Y. J. Guo, J. Yuan, R. W. Heath

https://ieeexplore.ieee.org/document/8550811

25 . Dual-Function MIMO Radar Communications System Design Via Sparse Array Optimization. IEEE TAES, 2018. Journal X. Wang, A. Hassanien, M. G. Amin

https://ieeexplore.ieee.org/document/8438940

26 . Time-Modulated FD-MIMO Array for Integrated Radar and Communication Systems. IEEE AWPL, 2018. Letter S. Y. Nusenu, W. Wang, A. Basit

https://ieeexplore.ieee.org/document/8345628

6. 网络

6.1 雷达网

1 . Evolution of Netted Radar Systems. IEEE Access, 2020. Journal Z. Geng

https://ieeexplore.ieee.org/document/8360535

2 . Multistatic Radar Placement Optimization for Cooperative Radar-Communication Systems. IEEE COMML, 2018. Letter M. Ben Kilani, G. Gagnon, F. Gagnon

https://ieeexplore.ieee.org/document/7819520

3 . Stochastic Geometry Methods for Modeling Automotive Radar Interference. IEEE TITS, 2017. Journal A. Al-Hourani, R. J. Evans, S. Kandeepan, B. Moran, H. Eltom

https://ieeexplore.ieee.org/document/7819520

4 . IEEE 802.22 Passive Radars: Multistatic Detection and Velocity Profiler. IEEE TAES, 2016. Journal P. Stinco, M. S. Greco, F. Gini, B. Himed

https://ieeexplore.ieee.org/document/7812878

5 . A Neighbor Discovery Algorithm in Network of Radar and Communication Integrated System. IEEE CSE, 2015. Conference J. Li, L. Peng, Y. Ye, R. Xu, W. Zhao, C. Tian

https://ieeexplore.ieee.org/document/7023734

6 . Detection in Passive MIMO Radar Networks. IEEE TSP, 2014. Journal D. E. Hack, L. K. Patton, B. Himed, M. A. Saville

https://ieeexplore.ieee.org/document/6803957

6.2 感知网

1 . Wireless sensor networks: a survey. Computer networks. Computer Networks, 2002. Journal I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci

https://www.sciencedirect.com/science/article/abs/pii/S1389128601003024

2 . Fundamental Limits of Wideband Localization— Part I, II. IEEE TIT, 2010. Journal1. Journal2 Y. Shen, H. Wymeersch, M. Win

https://ieeexplore.ieee.org/document/5571900

6.3 ISAC 网

1 . RadChat: Spectrum Sharing for Automotive Radar Interference Mitigation. IEEE TITS, 2021. Journal C. Aydogdu, M. F. Keskin, N. Garcia, H. Wymeersch, D. W. Bliss

https://ieeexplore.ieee.org/abstract/document/8943325

2 . Sensing and Communication Co-Design for Status Update in Multiaccess Wireless Networks. IEEE TMC, 2021. Journal F. Peng, Z. Jiang, S. Zhou, Z. Niu, S. Zhang

https://ieeexplore.ieee.org/abstract/document/9525223

7. 频谱共享

1 . Optimum Co-Design for Spectrum Sharing between Matrix Completion Based MIMO Radars and a MIMO Communication System. IEEE TSP, 2016. Journal B. Li, A. P. Petropulu, W. Trappe

https://ieeexplore.ieee.org/document/8114253

2 . Joint Design of Overlaid Communication Systems and Pulsed Radars. IEEE TSP, 2017. Journal L. Zheng, M. Lops, X. Wang, E. Grossi

https://ieeexplore.ieee.org/document/8355705

3 . MIMO Radar and Cellular Coexistence: A Power-Efficient Approach Enabled by Interference Exploitation. IEEE TSP, 2018. Journal F. Liu, C. Masouros, A. Li, T. Ratnarajah, J. Zhou

https://ieeexplore.ieee.org/document/1593335

4 . Cognitive Radar: A Way of the Future. IEEE SPM, 2006. Journal S. Haykin

https://ieeexplore.ieee.org/document/1593335

5 . Radar Spectrum Engineering and Management: Technical and Regulatory Issues. Proceedings of the IEEE, 2014. Magazine H. Griffiths, L. Cohen, S. Watts, E, Mokole, C. Baker, M. Wicks, S. Blunt.

https://ieeexplore.ieee.org/document/6967722

6 . Co-Design for Overlaid MIMO Radar and Downlink MISO Communication Systems via Cramér–Rao Bound Minimization. IEEE TSP, 2019. Journal Z. Cheng, B. Liao, S. Shi, Z. He, J. Li

https://ieeexplore.ieee.org/document/8892631

7 . Joint Transmit Designs for Coexistence of MIMO Wireless Communications and Sparse Sensing Radars in Clutter. IEEE TAES, 2017. Journal B. Li, A. P. Petropulu

https://ieeexplore.ieee.org/document/7950274

8 . Joint System Design for Coexistence of MIMO Radar and MIMO Communication. IEEE TSP, 2018. Journal J. Qian, M. Lops, Le Zheng, X. Wang, Z. He

https://ieeexplore.ieee.org/document/8352726

9 . Opportunistic Sharing Between Rotating Radar and Cellular. IEEE JSAC, 2012. Journal R. Saruthirathanaworakun, J. M. Peha, L. M. Correia

https://ieeexplore.ieee.org/document/6331681

1 0 . Mutual Information based Radar Waveform Design for Joint Radar and Cellular Communication Systems. IEEE ICASSP, 2016. Conference M. Bica, K. Huang, V. Koivunen, U. Mitra

https://ieeexplore.ieee.org/document/7472362

1 1 . Spectral Coexistence of MIMO Radar and MIMO Cellular System. IEEE TAES, 2017. Journal J. A. Mahal, A. Khawar, A. Abdelhadi, T. C. Clancy

https://ieeexplore.ieee.org/document/7814210

1 2 . Adaptive Interference Removal for Uncoordinated Radar/Communication Coexistence. IEEE JSTSP, 2017. Journal L. Zheng, M. Lops, X. Wang

https://ieeexplore.ieee.org/document/8233171

1 3 . Joint Design of Surveillance Radar and MIMO Communication in Cluttered Environments. IEEE TSP, 2020. Journal E. Grossi, M. Lops, L. Venturino

https://ieeexplore.ieee.org/document/9001239

1 4 . Interference Alignment Based Precoder-Decoder Design for Radar Communication Co-existence. IEEE ACSSC, 2018. Conference Y. Cui, V. Koivunen, X. Jing

https://ieeexplore.ieee.org/document/8335561

1 5 . Information Theoretic Approach for Waveform Design in Coexisting MIMO Radar and MIMO Communications. IEEE ICASSP, 2020. Conference M. Alaee-Kerharoodi, S. M. R. Bhavani, K. V. Mishra and B. Ottersten

https://ieeexplore.ieee.org/document/9053048

1 6 . Multi-constraint Spectral Co-design for Colocated MIMO Radar and MIMO Communications. IEEE ICASSP, 2020. Conference S. H. Dokhanchi, M. R. Bhavani Shankar, K. V. Mishra, B. Ottersten

https://ieeexplore.ieee.org/document/9054680

1 7 . Communications and Radar Coexistence in the Massive MIMO Regime: Uplink Analysis. IEEE TWC, 2019. Journal C. D’Andrea, S. Buzzi, M. Lops

https://ieeexplore.ieee.org/document/8871348

1 8 . Interference Removal for Radar/Communication Co-Existence: The Random Scattering Case. IEEE TWC, 2019. Journal Y. Li, L. Zheng, M. Lops, X. Wang

https://ieeexplore.ieee.org/document/8777296

1 9 . Power Allocation and Co-Design of Multicarrier Communication and Radar Systems for Spectral Coexistence. IEEE TSP, 2019. Journal F. Wang, H. Li, M. A. Govoni

https://ieeexplore.ieee.org/document/8728046

20 . Integrated Waveform for a Joint Radar-Communication System With High-Speed Transmission. IEEE WCL, 2019. Letter Q. Li, K. Dai, Y. Zhang, H. Zhang

https://ieeexplore.ieee.org/document/8693859

21 . Deep Learning Constellation Design for the AWGN Channel with Additive Radar Interference. IEEE TCOM, 2018. Journal F. Alberge

https://ieeexplore.ieee.org/document/8490882

22 . Coexistence of MIMO Radar and FD MIMO Cellular Systems With QoS Considerations. IEEE TWC, 2018. Journal S. Biswas, K. Singh, O. Taghizadeh, T. Ratnarajah

https://ieeexplore.ieee.org/document/8447442

23 . Opportunistic Radar in IEEE 802.11ad Networks. IEEE TSP, 2018. Journal E. Grossi, M. Lops, L. Venturino, A. Zappone

https://ieeexplore.ieee.org/document/8309274

24 . Transmit Designs for Spectral Coexistence of MIMO Radar and MIMO Communication Systems. IEEE TCSII, 2018. Journal J. Qian, Z. He, N. Huang, B. Li

https://ieeexplore.ieee.org/document/8331117

25 . Robust MIMO Beamforming for Cellular and Radar Coexistence. IEEE WCL, 2017. Letterl F. Liu, C. Masouros, A. Li, T. Ratnarajah

https://ieeexplore.ieee.org/document/7898445

26 . Spectral Coexistence of MIMO Radar and MIMO Cellular System. IEEE TAES, 2017. Journal J. A. Mahal, A. Khawar, A. Abdelhadi, T. C. Clancy

https://ieeexplore.ieee.org/document/7814210

27 . Spectrum Sharing between a Surveillance Radar and Secondary Wi-Fi Networks. IEEE TAES, 2016. Journal F. Hessar, S. Roy

https://ieeexplore.ieee.org/document/7511869

28 . On the Co-Existence of TD-LTE and Radar Over 3.5 GHz Band: An Experimental Study. IEEE WCL, 2016. Letter J. H. Reed et al.

https://ieeexplore.ieee.org/document/7462190

29 . Spectrum Sharing of Radar and Wi-Fi Networks: The Sensing/Throughput Tradeoff. IEEE TCCN, 2015. Journal H. Safavi-Naeini, S. Roy, S. Ashrafi

https://ieeexplore.ieee.org/document/7460082

30 . MIMO OFDM Radar with Communication and Interference Cancellation Features. IEEE RADAR, 2014. Conference Y. L. Sit, T. Zwick

https://ieeexplore.ieee.org/document/6875596

31 . Radar Waveform Design in a Spectrally Crowded Environment Via Nonconvex Quadratic Optimization. IEEE TAES, 2014. Journal A. Aubry, A. De Maio, M. Piezzo, A. Farina

https://ieeexplore.ieee.org/document/6850145

32 . Interference Mitigation Processing for Spectrum-Sharing Between Radar and Wireless Communications Systems. IEEE TAES, 2013. Journal H. Deng, B. Himed

https://ieeexplore.ieee.org/document/6933960

8. 移动计算 - WiFi感知

8.1 人类活动识别

1 . We Can Hear You with Wi-Fi!. IEEE TMC, 2016. Journal G. Wang, Y. Zou, Z. Zhou, K. Wu, L. M. Ni

https://ieeexplore.ieee.org/document/7384744

2 . WiFall: Device-Free Fall Detection by Wireless Networks. IEEE TMC, 2016. Journal Y. Wang, K. Wu, L. M. Ni

https://ieeexplore.ieee.org/document/7458186

3 . Recognizing Keystrokes Using WiFi Devices. IEEE JSAC, 2017. Journal YK. Ali, A. X. Liu, W. Wang, M. Shahzad

https://ieeexplore.ieee.org/document/7875144

4 . Device-Free Human Activity Recognition Using Commercial WiFi Devices. IEEE JSAC, 2017. Journal W. Wang, A. X. Liu, M. Shahzad, K. Ling, S. Lu

https://ieeexplore.ieee.org/document/7875144

5 . Toward Centimeter-Scale Human Activity Sensing with Wi-Fi Signals. IEEE Computer, 2018. Magazine D. Zhang, H. Wang, D. Wu

https://ieeexplore.ieee.org/document/7807197/

6 . A Survey on Behavior Recognition Using WiFi Channel State Information. IEEE COMMAG, 2017. Journal S. Yousefi, H. Narui, S. Dayal, S. Ermon, S. Valaee

https://ieeexplore.ieee.org/document/8067693

8.2 无线成像

1 . See through Walls with WiFi!. MobiCom, 2013. Conference A. Fadel, D. Katabi

https://dl.acm.org/doi/pdf/10.1145/2486001.2486039

2 . Through-the-Wall Sensing of Personnel Using Passive Bistatic WiFi Radar at Standoff Distances. IEEE TGRS, 2011. Journal K. Chetty, G. E. Smith, K. Woodbridge

https://ieeexplore.ieee.org/document/6020778

8.3. 控制流

1 . Coordinated Cognitive Risk Control for Bridging Vehicular Radar and Communication Systems. IEEE TITS, 2020. Journal S. Feng, S. Haykin

https://ieeexplore.ieee.org/document/9292428

9. 应用与演示

9.1 环境监测

1 . Environmental Monitoring by Wireless Communication Networks. Science, 2006. Magazine H. Messer, A. Zinevich, P. Alpert

https://www.tau.ac.il/%7Epinhas/papers/2006/Messer_et_al_SCIENCE_2006.pdf

2 . Country-wide rainfall maps from cellular communication networks. PNAS, 2013. Magazine A. Overeem, H. Leijnse, R. Uijlenhoet

https://www.pnas.org/content/pnas/110/8/2741.full.pdf

3 . Rain Rate Estimation Using Measurements From Commercial Telecommunications Links. IEEE TSP, 2009. Journal O. Goldshtein, H. Messer, A. Zinevich

https://ieeexplore.ieee.org/abstract/document/4749357

4 . Recurrent Neural Network for Rain Estimation Using Commercial Microwave Links. IEEE TGRS, 2020. Journal H. V. Habi, H. Messer

https://ieeexplore.ieee.org/document/9153027?denied=

9.2 多功能网络

1 . Vehicular RF Convergence: Simultaneous Radar, Communications, and PNT for Urban Air Mobility and Automotive Applications. IEEE RadarConf, 2020. Conference A. Herschfelt, A. Chiriyath, D. W. Bliss, C. D. Richmond, U. Mitra, S. D. Blunt

https://ieeexplore.ieee.org/abstract/document/9266507

2 . Convergent Communication, Sensing and Localization in 6G Systems: An Overview of Technologies, Opportunities and Challenges. IEEE ACESS, 2021. Journal C. De Lima et al.

https://ieeexplore.ieee.org/abstract/document/9330512

3 . Integrated Sensing, Computation and Communication in B5G Cellular Internet of Things. IEEE TWC, 2021. Journal Q. Qi, X. Chen, C. Zhong, Z. Zhang

https://ieeexplore.ieee.org/abstract/document/9206051

4 . Overview of Naval Multifunction RF Systems. IEEE EURAD, 2018. Conference P. W. Moo, D. J. DiFilippo

https://ieeexplore.ieee.org/document/8546521

5 . The Advanced Multifunction RF Concept. IEEE TMTT, 2005. Journal G. C. Tavik et al.

https://ieeexplore.ieee.org/document/1406306

6 . Overview of Advanced Multifunction RF System (AMRFS). IEEE PAST, 2002. Conference P. K. Hughes, J. Y. Choe

https://ieeexplore.ieee.org/document/858893

9.3 健康和老年人护理

1 . Assessment of Medication Self-administration using Artificial Intelligence. Nature Med, 2021. Magazine M. Zhao, K. Hoti, H. Wang, A. Raghu, D. Katabi

https://www.nature.com/articles/s41591-021-01273-1.pdf

2 . Vital-sign Monitoring and Spatial Tracking of Multiple People using a Contactless Radar-based Sensor. Nature Electronics, 2019. Magazine M. Mercuri, I. R. Lorato, Y-H. Liu, F. Wieringa, C. V. Hoof, T. Torfs

https://www.nature.com/articles/s41928-019-0258-6

3 . Radar Signal Processing for Sensing in Assisted Living: The Challenges Associated With Real-Time Implementation of Emerging Algorithms. IEEE SPM, 2019. Magazine J.L. Kernec, F. Fioranelli, C. Ding, H. Zhao, L. Sun, H. Hong, J. Lorandel, O. Romain

https://ieeexplore.ieee.org/document/8746868

4 . Exploiting WiFi Channel State Information for Residential Healthcare Informatics. IEEE COMMAG, 2018. Magazine B. Tan, Q. Chen, K. Chetty, K. Woodbridge, W. Li, R. Piechocki

https://ieeexplore.ieee.org/document/8360863

5 . Radar Signal Processing for Elderly Fall Detection: The Future for In-home Monitoring. IEEE SPM, 2016. Magazine M. G. Amin, Y. D. Zhang, F. Ahmad, K. C. D. Ho

https://ieeexplore.ieee.org/document/7421368

9.4 遥感

1 . Noncontact Vital Sign Detection With UAV-Borne Radars: An Overview of Recent Advances. IEEE VTM, 2021. Magazine Y. Rong, R. Gutierrez, K. V. Mishra, D. W. Bliss

https://ieeexplore.ieee.org/abstract/document/9478877

2 . First Demonstration of Joint Wireless Communication and High-Resolution SAR Imaging Using Airborne MIMO Radar System. IEEE TGRS, 2019. Journal J. Wang, X. Liang, L. Chen, L. Wang, K. Li

https://ieeexplore.ieee.org/document/8718390

9.5 现场指定无线电地图

1 . Toward Environment-Aware 6G Communications via Channel Knowledge Map. IEEE WCM, 2021. Magazine Y. Zeng, X. Xu

https://ieeexplore.ieee.org/abstract/document/9373011

9.6 同步定位和制图

1 . Millimeter-wave Mobile Sensing and Environment Mapping: Models, Algorithms and Validation. Arxiv, 2021. Journal C. B. Barneto, E. R. Foi, M. F. Keskin, T. Riihonen, M. Turunen, J. Talvitie, H. Wymeersch, M. Valkama

https://arxiv.org/pdf/2102.11593.pdf

9.7 安全与隐私

1 . Secure Radar-Communication Systems With Malicious Targets: Integrating Radar, Communications and Jamming Functionalities. IEEE TWC, 2020. Journal N. Su, F. Liu, C. Masouros

https://ieeexplore.ieee.org/abstract/document/9199556

2 . Secrecy Rate Optimizations for MIMO Communication Radar. IEEE TAES, 2018. Journal A. Deligiannis, A. Daniyan, S. Lambotharan, J. A. Chambers

https://ieeexplore.ieee.org/document/8327462

3 . Intrapulse Radar-Embedded Communications. IEEE TAES, 2010. Journal S. D. Blunt, P. Yatham, J. Stiles

https://ieeexplore.ieee.org/document/5545182

4 . Intrapulse Radar-embedded Communications Via Multiobjective Optimization. IEEE TAES, 2015. Journal D. Ciuonzo, A. De Maio, G. Foglia, M. Piezzo

https://ieeexplore.ieee.org/document/7376230

5 . On Radar Privacy in Shared Spectrum Scenarios. IEEE ICASSP, 2019. Conference A. Dimas, M. A. Clark, B. Li, K. Psounis, A. P. Petropulu

https://ieeexplore.ieee.org/document/8682745

9.8 演示

1 . JCR70: A Low-Complexity Millimeter-Wave Proof-of-Concept Platform for A Fully-Digital MIMO Joint Communication-Radar. IEEE OJVT, 2021. Journal P. Kumari, A. Mezghani, R. W. Heath Jr

https://ieeexplore.ieee.org/abstract/document/9392306

2 . Simultaneous Radar and Communications Emissions from a Common Aperture, Part I,II. IEEE RadarConf, 2017. Conference, Conference P. M. McCormick, S. D. Blunt, J. G. Metcalf

https://ieeexplore.ieee.org/document/7944478

3 . First Demonstration of Joint Wireless Communication and High-Resolution SAR Imaging Using Airborne MIMO Radar System. IEEE TGRS, 2019. Journal J. Wang, X. Liang, L. Chen, L. Wang, K. Li

https://ieeexplore.ieee.org/document/8718390

4 . Sensing and Communication Integrated System for Autonomous Driving Vehicles. IEEE InfocomWorkshop, 2020. Conference Q. Zhang, H. Sun, Z. Wei, Z. Feng

https://ieeexplore.ieee.org/document/9162963

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1979201.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

redis详细介绍

Redis是一个开源的、基于内存的高性能键值对数据库,属于NoSQL数据库的一种。它以高性能、丰富的数据结构、持久化特性、复制、集群以及发布/订阅等特性而闻名。以下是Redis的详细介绍: 一、基本介绍 名称:Redis,全称Remote Dicti…

<数据集>起重机识别数据集<目标检测>

数据集格式:VOCYOLO格式 图片数量:2984张 标注数量(xml文件个数):2984 标注数量(txt文件个数):2984 标注类别数:1 标注类别名称:[cranes] 使用标注工具:labelImg 标注规则:对…

Adobe Acrobat不支持图片格式转换PDF文件

我在将图片格式(PNG,JPEG)转换为PDF的过程中遇到了如下问题: 单文件的解决办法——在软件外实现转换: 使用照片打开图片 选择打印 打印机选择Adobe PDF,执行打印 选择PDF文件的保存位置,过一会儿可以正…

反转链表(LeetCode)

题目 给你单链表的头节点,请你反转链表,并返回反转后的链表 解题 class ListNode:def __init__(self, value0, nextNone):self.value valueself.next nextdef reverse_linked_list_recursive(head: ListNode) -> ListNode:# 空链表或单节点链表if …

【Material-UI】Autocomplete组件的自定义功能(Customization)详解

文章目录 一、定制输入框二、全局自定义选项三、特定场景的自定义1. GitHub标签选择器2. 提示功能 四、总结 在现代Web开发中,UI组件的可定制性是提升用户体验和界面一致性的重要因素。Material-UI的Autocomplete组件提供了丰富的自定义选项,使得开发者可…

调试工具之GDB的基本使用

GDB基本使用 GDB是Linux下一款非常强大的调试软件&#xff0c;其实就是GNU Debugger的缩写。接下来我们学习一下他的基本使用。 例子函数&#xff0c;其中只有一个ds18b20的采集温度函数和一个主函数&#xff1a; #include <stdio.h> #include <errno.h> #includ…

一些硬件知识(十九)

立创的这个功能&#xff0c;绕等长线时候真的好用到o(╥﹏╥)o&#xff1a; 设计完成后一定要有一个最小工艺安全间距的DRC检查&#xff0c;不然的话又会出现嘉立创反馈短路&#xff0c;或者工艺生产不了&#xff1a; PMOS防反接电路&#xff1a; 理分析&#xff1a;当输入端加…

【两数之和 II - 输入有序数组】python刷题记录

R3-二分查找 双指针简单题 class Solution:def twoSum(self, numbers: List[int], target: int) -> List[int]:#双指针法i0jlen(numbers)-1while i<j:snumbers[i]numbers[j]if s>target:j-1elif s<target:i1else:return i1,j1return []

react-native从入门到实战系列教程一InputText组件之登录表单

登录使我们业务中不可缺少的功能&#xff0c;所以这篇我们学习写在react-native中实现表单登录 实现效果 代码实现 import {View,Text,StyleSheet,Dimensions,TextInput,Button,Alert, } from react-native; import {useEffect, useState} from react; import Logo from ../.…

通过systemd-resloved实现不同域名通过不同的`nameserver`进行解析

通过systemd-resloved实现不同域名通过不同的nameserver进行解析 一般来说只要DNS不发生网络故障就只会在一个nameserver 获取地址&#xff0c;但我们可能需要从不同nameserver 获取不同域名的地址&#xff0c;比如内网环境和外网环境分别使用不同的nameserver &#xff0c;但…

中间证书缺失如何发现和修复

一、背景 微信小程序等功能在发送后台请求时一般都会要求证书齐全&#xff0c;否则就会导致请求发送失败。 一般来说&#xff0c;如果中间证书不齐全&#xff0c;在不同设备上表现不一样&#xff0c;一般PC端可能不会有太大问题&#xff0c;仍然认为你的证书可信&#xff0c;但…

shell实用笔记

目录 一、基本语法 1. 基础知识 2. if判断 3. 循环遍历 介绍一个{ n1..n2 }, seq -s分隔符 n1 n2. 4. 函数脚本传参 结果会是如何&#xff1f; 5. 字符串常规操作 6. 字符串处理&#xff1a;awk、sed、tr。留着下次&#xff0c;太多了 一、基本语法 1. 基础知识 shel…

SSM网上考试系统—计算机毕业设计源码12795

摘 要 科技进步的飞速发展引起人们日常生活的巨大变化&#xff0c;电子信息技术的飞速发展使得电子信息技术的各个领域的应用水平得到普及和应用。信息时代的到来已成为不可阻挡的时尚潮流&#xff0c;人类发展的历史正进入一个新时代。在现实运用中&#xff0c;应用软件的工作…

后端学习笔记(3)--Maven

1.Maven ​ *专门用于管理和构建Java项目的工具&#xff0c;主要功能有&#xff1a; ​ 1.提供了一套标准化的项目结构 ​ 2.提供了一套标准化的构建流程(编译&#xff0c;测试&#xff0c;打包&#xff0c;发布) ​ 3.提供了一套依赖管理机制 1.简介 ​ *Apache Maven是一…

三分钟了解自动驾驶中视觉Transform应用:视觉Transoform自动驾驶综述

引言 Transformer技术在自然语言处理领域取得突破&#xff0c;催生了BERT、GPT和T5等模型。它在计算机视觉中也显示出潜力&#xff0c;尤其在自动驾驶领域&#xff0c;Transformer在物体检测、车道检测和分割等关键任务中替代了传统CNN和RNN&#xff0c;与强化学习结合用于路径…

秒懂Linux之gdb调试

目录 ​ 一. 前情提要 二. 相关命令 2.1 l 行号/函数名 2.2 r 2.3 b 2.4 info break 2.5 d 2.6 disable/enable 2.7 n 2.8 s 2.9 p 2.10 display/undisplay 2.11 c 2.12 bt 2.13 finish 2.14 untill 2.15 set var 三. 总结 一. 前情提要 Linux gcc/g出来的二…

100379.新增道路查询后的最短距离I

今天看到很有意思的一个题目&#xff0c;记录下来&#xff0c;供大家参考 题目描述 解题思路 为了解决这个问题&#xff0c;我们需要处理一系列的单向道路添加操作&#xff0c;并在每次添加后计算从城市 0 到城市 n-1 的最短路径长度。由于初始时每个城市 i 都有一条到 i1 的…

【C++高阶】:C++11的深度解析下

✨ 彼方尚有荣光在&#xff0c;何须悲叹少年轻 &#x1f30f; &#x1f4c3;个人主页&#xff1a;island1314 &#x1f525;个人专栏&#xff1a;C学习 &#x1f680; 欢迎关注&#xff1a;&#x1f44d;点赞 &#x1f442;&…

浅谈 Spring AOP框架 (1)

文章目录 一、什么是 Spring AOP二、为什么要使用 Spring AOP三、AOP 的一些应用场景四、AOP 的组成五、如何使用 Spring AOP六、Spring AOP 的实现原理6.1、JDK 和 CGLIB 的区别 一、什么是 Spring AOP AOP (Aspect Oriented Programming) &#xff1a;面向切面编程&#xff…

[CTF]-PWN:格式化字符串漏洞题综合解析

printf型格式化字符串漏洞&#xff1a; 任意地址写&#xff1a; 32位&#xff1a; 例题&#xff08;inndy_echo&#xff09;&#xff1a; 有格式化字符串漏洞&#xff0c;可以修改printf的got表内地址为system&#xff0c;传参getshell 解法一&#xff1a; 在32位中可以使…