基于LT模式修改,并加入前面的应用层计算器,实现稍完整的服务器功能
1.修改tcp_socket.hpp,新增非阻塞读和非阻塞写接口
2.对于accept返回的new_sock加上EPOLLET这样的选项
注意:此代码暂时未考虑listen_sock ET的情况,如果将listen_sock设为ET,则需要非阻塞轮询的方式accept,否则会导致同一时刻大量的客户端同时连接的情况,只能accept一次的问题
目录
- 整体结构
- 流程
- 运行示例
- 全
- 改进
- Reactor的理论
1. 整体结构
TpcServer服务器类,维护_listen套接字,用来获取连接和监听读写事件,map用套接字做键值,rev数组作为epoll_wait的输出参数
每一个连接都是一个session结构,包含读写缓冲区,ip和端口方便调试,读写错误的回调处理函数,指针回指服务器
nocopy类用来给某些类提供无法拷贝的功能
socket类,提供套接字的创建,监听等功能
协议类和计算类为前面章节的内容,用来对收到的数据处理返回结果
Epoll类提供epoll多路转接功能
comm类单独拎出来的设置非阻塞功能,因为很多地方都要用到
2. 流程
服务端
TpcServer.hpp
继承enable_shared_from_this类可以解决智能指针不能用this构造的问题,使用智能指针对象需要用shared_from_this()功能来获取
定义两个函数模板,构造时传入报文处理回调
Init函数初始化套接字,设置非阻塞,AddConnection函数添加listen套接字到关注事件中,绑定事件分配函数Accepter
AddConnection函数参数传入要设置的套接字,事件,三个函数,ip和端口用来调试
Connection
构造时传入sock初始化成员变量
作为连接管理类,需要管理每个连接的发送和接收缓冲区,所以提供存入缓冲区数据的和返回缓冲区内容的功能,再提供初始化自己成员函数的功能
TpcServer.hpp
继续说明AddConnection函数,这个函数的作用为每个连接初始化session,添加关注事件和管理,后面每个新链接都要用这个函数
构造一个Connection的临时对象
设置成员TpcServer和回调函数,ip和port
添加对象到map结构里,添加listen的事件,listen关注读
Accpeter连接管理器函数,参数是事件就绪的会话
不一定只有一个连接到来,所以需要循环读取。用accept获取就绪连接,设置非阻塞后,调用AddConnection函数加入会话管理,作为连接会话三个回调函数分别是读写错误
当错误码是EWOULDBLOCK的时候,说明已经获取完,退出循环,EINTR表示系统调用被信号中断,所以继续读取,其他情况退出
Recver数据读取函数,用来提供读取数据添加到Connection缓冲区的功能
首先判断了连接的生命周期,如果消亡就退出。通过lock获取一个shared指针对象。
因为是ET模式,所以一次性需要读完所有数据,用recv函数,返回值n大于0表示读取到数据,添加到接收缓冲区中,等于0对方客户度退出,调用错误处理函数,小于0和上面一样判断是否读完,不是就走错误处理
最后将读取到的数据交给处理函数,所有报文情况都由它处理
Sender函数,获取连接的发送缓冲区发送,一次性将数据都发送,返回值大于0发送成功,将发送了的内容删除,判断如果发送缓冲区为空就退出。0表示没发送任何内容也退出,其他情况判断是否走错误处理
epoll/select/poll,因为写事件经常都是就绪的,发送缓冲区基本会有空间,如果设置了写关心,每次都会就绪,经常返回浪费cpu资源。所以对于读,需要设置常关心,写,按需求设置
当发送完后,检查缓冲区不为空,没发送完就对写事件开启关心,发送完将事件关闭
EnableEvent函数,设置套接字的读和写,根据传入的参数,判断有没有读和写,通过三木运算符,有就加入event,最后修改套接字的事件
Excepter函数,错误处理函数,遇到错误就是关闭这个链接。如果连接在读和写时发生错误,用这个函数。取消这个套接字的所有关心,关闭文件,map中移除
IsSafeConnection函数,检查链接是否合法,遍历map,是否存在
主逻辑
Loop函数,服务器的运行循环,传入超时时间,不断调用事件分配函数和打印连接函数
PrintConnection函数,打印出map中所有的fd,用来调试
Dispatcher函数,timeout等待时间是上一个函数传入。不断wait监听revs数组添加了的套接字,n会返回就绪的个数,取到套接字和事件,将异常转为读写统一处理。如果是读事件就绪,并且连接合法,就调用读取函数,写事件调用写函数
TpcServer.cc
全局的计算类对象,DefaultOnMessage函数是默认的报文处理函数,对报文的完整性判断,计算返回结果并发送
调用计算类的函数,判断返回的字符串是否为空,为空说明报文不完整或有错误。如果处理完成,将结果加入到发送缓冲区,用tcpserver对象发送
main函数创建svr对象,传入报文处理函数,启动服务器
客户端
客户端链接服务器,生成5个随机报文发送接收结果打印
是前面章节的网络计算器
网络计算器
3. 运行示例
4. 全
TcpServer.hpp
#pragma ocne
#include <iostream>
#include <memory>
#include <functional>
#include <unordered_map>
#include "Comm.hpp"
#include "log.hpp"
#include "Epoll.hpp"
#include "Socket.hpp"
class Connection;
class TpcServer;
using func_t = std::function<void(std::weak_ptr<Connection>)>; // 用户缓冲区处理函数模板
using except_func_t = std::function<void(std::weak_ptr<Connection>)>;
static const uint16_t port = 8000;
static const int g_buff_size = 128;
// 设置et
uint32_t EVENT_IN = (EPOLLIN | EPOLLET);
uint32_t EVENt_OUT = (EPOLLOUT | EPOLLET);
class Connection
{
public:
Connection(int sock)
{
_sock = sock;
}
~Connection()
{
}
void AppendInbuff(const std::string& message)
{
_inbuff += message;
}
void AppendOutbuff(const std::string& message)
{
_outbuff += message;
}
int Fd()
{
return _sock;
}
std::string& Inbuffer() // for debug
{
return _inbuff;
}
std::string& Outbuffer() // for debug
{
return _outbuff;
}
void SetHandler(func_t recv_cb, func_t send_cb, except_func_t except_cb)
{
_recv_cb = recv_cb;
_send_cb = send_cb;
_except_cb = except_cb;
}
void SetWeakPtr(std::weak_ptr<TpcServer> tcp_setver_ptr)
{
_tcp_server_ptr = tcp_setver_ptr;
}
private:
int _sock;
std::string _inbuff; // string不能二进制, 需要vector
std::string _outbuff;
public:
func_t _recv_cb;
func_t _send_cb;
except_func_t _except_cb;
std::weak_ptr<TpcServer> _tcp_server_ptr; // 回指向服务器
std::string _ip;
uint16_t _port;
};
class TpcServer :public std::enable_shared_from_this<TpcServer>, public nocopy
{
static const int num = 64;
public:
TpcServer(func_t OnMessage)
: _listensocket_ptr(new Sock())
, _epoll_ptr(new Epoll())
, _OnMessage(OnMessage)
, _quit(true)
{
}
void AddConnection(int sock, uint32_t event, func_t recv_cb, func_t send_cb, \
except_func_t except_cb, const std::string& ip = "0.0.0.0",
uint16_t port = 0)
{
// 1. 给sock创建connection对象, 将lstensock添加到connection中
// 同时,listeinsock和connection放入_connections
std::shared_ptr<Connection> new_con(new Connection(sock));
new_con->SetWeakPtr(shared_from_this()); // 返回当前对象的shared_ptr
new_con->SetHandler(recv_cb, send_cb, except_cb);
new_con->_ip = ip;
new_con->_port = port;
// 2. 添加到map
_connections.insert(std::make_pair(sock, new_con));
// 3. 添加对应事件
_epoll_ptr->EpollUpdate(EPOLL_CTL_ADD, sock, event);
}
void Init()
{
_listensocket_ptr->Socket();
int opt = 1;
setsockopt(_listensocket_ptr->Fd(), SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT,
&opt, sizeof(opt));
// et模式需要非阻塞
SetNonBlock(_listensocket_ptr->Fd());
lg.logmessage(info, "listensock create success:%d", _listensocket_ptr->Fd());
_listensocket_ptr->Bind(port);
_listensocket_ptr->Listen();
// 关联connection
AddConnection(_listensocket_ptr->Fd(), EVENT_IN,
std::bind(&TpcServer::Accepter, this, std::placeholders::_1),
nullptr, nullptr);
}
void Accepter(std::weak_ptr<Connection> con)
{
// 获取强引用对象, 检查是否销毁
auto connection = con.lock();
// 获取新链接
while (true)
{
struct sockaddr_in peer;
socklen_t len = sizeof(peer);
// ::调用原生函数
int sock = ::accept(connection->Fd(), (struct sockaddr *)&peer, &len);
if (sock > 0)
{
char ipbuf[128];
inet_ntop(AF_INET, &peer.sin_addr.s_addr, ipbuf, sizeof(ipbuf));
uint16_t port = ntohs(peer.sin_port);
lg.logmessage(info, "get a new clinet[%s:%d]:%d", ipbuf, port, sock);
// 设置非阻塞
SetNonBlock(sock);
// 添加连接事件
AddConnection(sock, EVENT_IN,\
std::bind(&TpcServer::Recver, this, std::placeholders::_1),\
std::bind(&TpcServer::Sender, this, std::placeholders::_1),\
std::bind(&TpcServer::Excepter, this, std::placeholders::_1),\
ipbuf, port);
}
else
{
if (errno == EWOULDBLOCK)
{
break;
}
else if (errno == EINTR) // 信号中断
{
continue;
}
else
{
break;
}
}
}
}
void Recver(std::weak_ptr<Connection> con)
{
if (con.expired())
return;
auto connec = con.lock();
int sock = connec->Fd();
while (true)
{
char buff[g_buff_size];
memset(buff, 0, sizeof(buff));
ssize_t n = recv(sock, buff, sizeof(buff) - 1, 0); // 非阻塞读取
if (n > 0)
{
connec->AppendInbuff(buff);
}
else if (n == 0) // 错误处理
{
lg.logmessage(info, "sockfd:%d, client[%s:%d] quit", sock, connec->_ip.c_str(), connec->_port);
connec->_except_cb(connec);
return;
}
else
{
if (errno == EWOULDBLOCK) // 读完
{
break;
}
else if (errno == EINTR)
{
continue;
}
else
{
lg.logmessage(warning, "sockfd:%d, client[%s:%d] recv error", sock, connec->_ip.c_str(), connec->_port);
connec->_except_cb(connec);
return;
}
}
}
// 数据有了, 不一定安全 1.检测 2.如果有完整报文,处理
_OnMessage(connec);
}
void Sender(std::weak_ptr<Connection> con)
{
if (con.expired())
return;
auto connection = con.lock();
auto &outbuff = connection->Outbuffer();
while (true)
{
ssize_t n = send(connection->Fd(), outbuff.c_str(), outbuff.size(), 0);
if (n > 0)
{
outbuff.erase(0, n);
if (outbuff.empty())
{
break;
}
}
else if (n == 0)
{
return; // 没有发
}
else
{
if (errno == EWOULDBLOCK)
{
break;
}
else if (errno == EINTR)
{
continue;
}
else
{
lg.logmessage(info, "sockfd:%d, client[%s:%d] recv error", connection->Fd(), connection->_ip.c_str(), connection->_port);
connection->_except_cb(connection);
return;
}
}
}
// 没发完, 开启对写事件关心
if (!outbuff.empty())
{
EnableEvent(connection->Fd(), true, true);
}
else
{
EnableEvent(connection->Fd(), true, false);
}
}
void EnableEvent(int sock, bool readable, bool writeable)
{
uint32_t evnet = 0;
evnet |= ((readable ? EPOLLIN : 0) | (writeable ? EPOLLOUT : 0) | EPOLLET);
_epoll_ptr->EpollUpdate(EPOLL_CTL_MOD, sock, evnet);
}
void Excepter(std::weak_ptr<Connection> con)
{
if (con.expired())
return;
auto connection = con.lock();
int fd = connection->Fd();
lg.logmessage(warning, "Excepter handler:%d, client[%s:%d] excepter error", connection->Fd(), connection->_ip.c_str(), connection->_port);
// 1. 移除关心
_epoll_ptr->EpollUpdate(EPOLL_CTL_DEL, fd, 0);
// 2. 关闭文件
lg.logmessage(debug, "close %d...", fd);
close(fd);
// 3. unordered_map中移除
lg.logmessage(debug, "remove connection %d", fd);
_connections.erase(fd);
}
bool IsSafeConnection(int sock)
{
auto it = _connections.find(sock);
if (it == _connections.end())
{
return false;
}
else
{
return true;
}
}
void Dispatcher(int timeout)
{
int n = _epoll_ptr->EpollWait(_revs, num, timeout);
for (int i = 0; i < n; i++)
{
int sock = _revs[i].data.fd;
uint32_t event = _revs[i].events;
// 统一将异常转换为读写问题
if (event & EPOLLERR)
{
event |= (EPOLLIN | EPOLLOUT);
}
if (event & EPOLLHUP)
{
event |= (EPOLLIN | EPOLLOUT);
}
if ((event & EPOLLIN) && IsSafeConnection(sock))
{
if (_connections[sock]->_recv_cb)
{
_connections[sock]->_recv_cb(_connections[sock]);
}
}
if ((event & EPOLLOUT) && IsSafeConnection(sock))
{
if (_connections[sock]->_send_cb)
{
_connections[sock]->_send_cb(_connections[sock]);
}
}
}
}
void Loop()
{
_quit = false;
while (!_quit)
{
Dispatcher(3000);
PrintConnection();
}
_quit = true;
}
void PrintConnection()
{
std::cout << "_connection list: ";
for (auto &con: _connections)
{
std::cout << con.second->Fd() << ",";
}
std::cout << std::endl;
}
private:
std::shared_ptr<Sock> _listensocket_ptr; // 监听socket, 可以移到外部
std::shared_ptr<Epoll> _epoll_ptr; // 内核
std::unordered_map<int, std::shared_ptr<Connection>> _connections;
struct epoll_event _revs[num];
func_t _OnMessage;
bool _quit;
};
TcpServer.cc
#include <memory>
#include "TpcServer.hpp"
#include "Calculator.hpp"
Calculator calculator;
void DefaultOnMessage(std::weak_ptr<Connection> con)
{
if(con.expired()) return;
auto connection_ptr = con.lock();
std::cout << connection_ptr->Inbuffer() << std::endl;
std::string response_str = calculator.Handler(connection_ptr->Inbuffer()); // 业务逻辑简单,如果复杂,需要拿到结果单独线程处理
if (response_str.empty())
{
return;
}
lg.logmessage(debug, "%s", response_str.c_str());
connection_ptr->AppendOutbuff(response_str);
//connection_ptr->_send_cb(connection_ptr);
auto tcpserver = connection_ptr->_tcp_server_ptr.lock();
tcpserver->Sender(connection_ptr);
}
int main()
{
std::shared_ptr<TpcServer> svr(new TpcServer(DefaultOnMessage));
svr->Init();
svr->Loop();
return 0;
}
Clinet.cc
#include <time.h>
#include <unistd.h>
#include <assert.h>
#include "Socket.hpp"
#include "Protocol.hpp"
int main()
{
srand(time(NULL));
std::cout << "准备连接" << std::endl;
uint16_t serverport = 8000;
string serverip = "106.54.46.147";
struct sockaddr_in server;
bzero(&server, sizeof(server));
server.sin_family = AF_INET;
server.sin_addr.s_addr = inet_addr(serverip.c_str());
server.sin_port = htons(serverport);
const string opers = "+-*/%=^";
Sock socket;
socket.Socket();
bool r = socket.Connect(serverip, serverport);
if (!r)
return 1;
std::cout << "连接成功, 开始发送数据" << std::endl;
int cnt = 1;
while (cnt <= 5)
{
std::cout << "=============第" << cnt << "次测试...." << "============" << std::endl;
string package;
int x = rand() % 100;
int y = rand() % 100 + 1;
char op = opers[rand() % opers.size()];
Request req(x, y, op);
req.DebugPrint();
req.Serialize(&package);
package = Encode(package);
std::cout << package << std::endl;
write(socket._sockfd, package.c_str(), package.size());
char buff[1024];
int n = read(socket._sockfd, buff, sizeof(buff));
string inbuff_stream;
if (n > 0)
{
buff[n] = 0;
inbuff_stream += buff;
std::cout << inbuff_stream << std::endl;
string content;
bool r = Decode(inbuff_stream, &content);
assert(r);
Response resp;
r = resp.Deserialize(content);
assert(r);
resp.DebugPrint();
}
std::cout << "=======================================" << std::endl;
sleep(1);
cnt++;
}
socket.Close();
return 0;
}
Comm.hpp
#pragma once
#include <fcntl.h>
#include <unistd.h>
#include "Socket.hpp"
void SetNonBlock(int sock)
{
int f1 = fcntl(sock, F_GETFL);
if (f1 < 0)
{
exit(NONBLOCKERR);
}
fcntl(sock, F_SETFL, f1 | O_NONBLOCK);
}
Epoll.hpp
#pragma once
#include <sys/epoll.h>
#include "nocopy.hpp"
#include "log.hpp"
class Epoll : public nocopy
{
static const int size = 128;
Log log;
public:
Epoll()
{
_epfd = epoll_create(size);
if (_epfd == -1)
{
log.logmessage(ERROR, "epoll create error:%s", strerror(errno));
}
else
{
log.logmessage(info, "epoll create success:%d", _epfd);
}
}
int EpollWait(struct epoll_event revents[], int num, int timeout)
{
int n = epoll_wait(_epfd, revents, num, timeout);
return n;
}
int EpollUpdate(int oper, int sock, uint32_t event)
{
int n = 0;
if (oper == EPOLL_CTL_DEL)
{
n = epoll_ctl(_epfd, oper, sock, nullptr);
if (n != 0)
{
log.logmessage(ERROR, "epoll_ctl delete error");
}
}
else
{
struct epoll_event ev;
ev.events = event;
ev.data.fd = sock;
n = epoll_ctl(_epfd, oper, sock, &ev);
if (n != 0)
{
log.logmessage(ERROR, "epoll_ctl add error");
}
}
}
~Epoll()
{
if (_epfd >= 0)
{
close(_epfd);
}
}
private:
int _epfd;
int _timeout{3000};
};
nocopy.hpp
#pragma once
class nocopy
{
public:
nocopy(){}
nocopy(const nocopy &) = delete;
nocopy& operator=(const nocopy&) = delete;
};
Socket.hpp
#pragma once
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <fcntl.h>
#include "log.hpp"
enum
{
SOCKERR = 1,
BINDERR,
LISERR,
NONBLOCKERR
};
Log lg;
const int backlog = 5;
class Sock
{
public:
Sock()
{
}
void Socket()
{
_sockfd = socket(AF_INET, SOCK_STREAM, 0);
if (_sockfd < 0)
{
lg.logmessage(fatal, "socket error");
exit(SOCKERR);
}
int opt = 1;
setsockopt(_sockfd, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt)); // 防止偶发性的服务器无法进行立即重启(tcp协议的时候再说)
}
void Bind(uint16_t port)
{
struct sockaddr_in local;
memset(&local, 0, sizeof(local));
local.sin_family = AF_INET;
local.sin_addr.s_addr = INADDR_ANY;
local.sin_port = htons(port);
int bret = bind(_sockfd, (const struct sockaddr*)&local, sizeof(local));
if (bret < 0)
{
lg.logmessage(fatal, "bind error");
exit(BINDERR);
}
}
void Listen()
{
int lret = listen(_sockfd, backlog);
if (lret < 0)
{
lg.logmessage(fatal, "listen error");
exit(LISERR);
}
}
int Accept(string* clientip, uint16_t* clientport)
{
sockaddr_in peer;
socklen_t len = sizeof(peer);
int newfd = accept(_sockfd, (sockaddr*)&peer, &len);
if (newfd < 0)
{
lg.logmessage(warning, "accept error");
return -1;
}
char ipstr[64];
inet_ntop(AF_INET, &peer.sin_addr, ipstr, sizeof(ipstr));
*clientip = ipstr;
*clientport = ntohs(peer.sin_port);
return newfd;
}
bool Connect(const string ip, const uint16_t port)
{
sockaddr_in peer;
memset(&peer, 0, sizeof(peer));
peer.sin_family = AF_INET;
inet_pton(AF_INET, ip.c_str(), &peer.sin_addr);
peer.sin_port = htons(port);
int cret = connect(_sockfd, (const struct sockaddr*)&peer, sizeof(peer));
if (cret == -1)
{
lg.logmessage(warning, "connect error");
return false;
}
return true;
}
void Close()
{
close(_sockfd);
}
int Fd()
{
return _sockfd;
}
~Sock()
{
}
public:
int _sockfd;
};
Protocol.hpp
#pragma once
#include <string>
#include <jsoncpp/json/json.h>
//#define MYSELF 1
//分隔符
const std::string black_sep = " ";
const std::string protocol_sep = "\n";
//解决报文外部格式
//len\n正文\n
std::string Encode(std::string& message)
{
std::string package = std::to_string(message.size());
package += protocol_sep;
package += message;
package += protocol_sep;
return package;
}
//len\na + b\n
bool Decode(std::string& message, std::string* content)
{
std::size_t pos = message.find(protocol_sep);
if (pos == std::string::npos)
{
return false;
}
std::string len_str = message.substr(0, pos);
std::size_t len = std::stoi(len_str);
std::size_t total_len = len_str.size() + len + 2;
//检查长度
if (message.size() < total_len)
{
return false;
}
*content = message.substr(pos + 1, len);
//earse 移除报文
message.erase(0, total_len);
return true;
}
class Request
{
public:
Request(){}
Request(int a, int b, char oper)
{
_num1 = a;
_num2 = b;
_op = oper;
}
//a + b
bool Serialize(std::string* out)
{
#ifdef MYSELF
//构建报文有效载荷
std::string str;
str += std::to_string(_num1);
str += black_sep;
str += _op;
str += black_sep;
str += std::to_string(_num2);
*out = str;
return true;
#else
Json::Value root;
root["x"] = _num1;
root["y"] = _num2;
root["op"] = _op;
Json::FastWriter w;
*out = w.write(root);
return true;
#endif
}
//a + b
bool Deserialize(std::string& in)
{
#ifdef MYSELF
//a
std::size_t left = in.find(black_sep);
if (left == std::string::npos)
{
return false;
}
std::string part_a = in.substr(0, left);
// b
std::size_t right = in.rfind(black_sep);
if (right == std::string::npos)
{
return false;
}
std::string part_b = in.substr(right + 1);
//+
if (left + 2 != right)
{
return false;
}
_op = in[left+1];
_num1 = std::stoi(part_a);
_num2 = std::stoi(part_b);
return true;
#else
Json::Value root;
Json::Reader r;
r.parse(in, root);
_num1 = root["x"].asInt();
_num2 = root["y"].asInt();
_op = root["op"].asInt();
return true;
#endif
}
void DebugPrint()
{
std::cout << "新请求构建完成:" << _num1 << _op << _num2 << std::endl;
}
public:
int _num1;
int _num2;
char _op;
};
class Response
{
public:
Response(){}
Response(int res, int cod)
{
_result = res;
_code = cod;
}
//1000 0
bool Serialize(std::string* out)
{
#ifdef MYSELF
string str = std::to_string(_result);
str += black_sep;
str += std::to_string(_code);
*out = str;
return true;
#else
Json::Value root;
root["res"] = _result;
root["code"] = _code;
Json::FastWriter w;
*out = w.write(root);
return true;
#endif
}
//1000 0
bool Deserialize(std::string& in)
{
#ifdef MYSELF
std::size_t pos = in.find(black_sep);
if (pos == std::string::npos)
{
return false;
}
std::string left = in.substr(0, pos);
std::string right = in.substr(pos + 1);
_result = std::stoi(left);
_code = std::stoi(right);
return true;
#else
Json::Value root;
Json::Reader r;
r.parse(in, root);
_result = root["res"].asInt();
_code = root["code"].asInt();
return true;
#endif
}
void DebugPrint()
{
std::cout << "结果响应完成,result:" << _result << ",code:" << _code << std::endl;
}
public:
int _result;
int _code; //0可信,否则表明对应的错误
};
#define MySelf 1
Calcluator.hpp
#pragma once
#include "Protocol.hpp"
enum
{
DIVZERO = 1,
MODZERO,
OTHER_OPER
};
class Calculator
{
public:
Calculator()
{
}
Response CalculatorHelp(const Request& req)
{
Response res(0, 0);
switch (req._op)
{
case '+':
res._result = req._num1 + req._num2;
break;
case '-':
res._result = req._num1 - req._num2;
break;
case '*':
res._result = req._num1 * req._num2;
break;
case '/':
if (req._num2 == 0)
{
res._code = DIVZERO;
}
else
{
res._result = req._num1 / req._num2;
}
break;
case '%':
if (req._num2 == 0)
{
res._code = MODZERO;
}
else
{
res._result = req._num1 % req._num2;
break;
}
default:
res._code = OTHER_OPER;
break;
}
return res;
}
std::string Handler(std::string& package)
{
std::string content;
bool r = Decode(package, &content);
if (!r)
{
return "";
}
Request req;
r = req.Deserialize(content);
if (!r)
{
return "";
}
req.DebugPrint();
content = "";
Response res = CalculatorHelp(req);
res.DebugPrint();
res.Serialize(&content);
content = Encode(content); // len\n正文\n
return content;
}
~Calculator()
{
}
};
Log.hpp
#pragma once
#include <stdarg.h>
#include <iostream>
#include <stdio.h>
#include <cstring>
#include <time.h>
#include <cerrno>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
using namespace std;
#define info 0
#define debug 1
#define warning 2
#define ERROR 3
#define fatal 4
#define screen 1
#define onefile 2
#define classfile 3
#define PATH "log.txt"
class Log
{
public:
Log(int style = screen)
{
printstyle = style;
dir = "log/";
}
void enable(int method)
{
printstyle = method;
}
const char *leveltostring(int level)
{
switch (level)
{
case 0:
return "info";
break;
case 1:
return "debug";
break;
case 2:
return "warning";
break;
case 3:
return "error";
break;
case 4:
return "fatal";
break;
default:
return "none";
break;
}
}
void printlog(int level, const string &logtxt)
{
switch (printstyle)
{
case screen:
cout << logtxt;
break;
case onefile:
printonefile(PATH, logtxt);
break;
case classfile:
printclassfile(level, logtxt);
break;
}
}
void logmessage(int level, const char *format, ...)
{
time_t t = time(0);
tm *ctime = localtime(&t);
char leftbuff[1024];
sprintf(leftbuff, "[%s]%d-%d-%d %d:%d:%d:", leveltostring(level), ctime->tm_year + 1900,
ctime->tm_mon + 1, ctime->tm_mday, ctime->tm_hour, ctime->tm_min, ctime->tm_sec);
char rightbuff[1024];
va_list s;
va_start(s, format);
vsprintf(rightbuff, format, s);
va_end(s);
char logtext[2048];
sprintf(logtext, "%s %s\n", leftbuff, rightbuff);
//printf(logtext);
printlog(level, logtext);
}
void printonefile(const string& logname, const string& logtxt)
{
int fd = open(logname.c_str(), O_WRONLY | O_CREAT | O_APPEND, 0666);
if (fd < 0)
{
return;
}
write(fd, logtxt.c_str(), logtxt.size());
close(fd);
}
void printclassfile(int level, const string &logtxt)
{
//log.txt.info
string filename = dir + PATH;
filename += ".";
filename += leveltostring(level);
printonefile(filename, logtxt);
}
~Log(){};
private:
int printstyle;
string dir; //分类日志,放入目录中
};
// int sum(int n, ...)
// {
// int sum = 0;
// va_list s;
// va_start(s, n);
// while (n)
// {
// sum = sum + va_arg(s, int);
// n--;
// }
// return sum;
// }
CMakeLists.txt
cmake_minimum_required(VERSION 2.8.12.2)
project(TpcServer)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++11")
set(CMAKE_CXX_STANDARD_REQUIRED ON) # 确保必须使用指定的标准
add_executable(TpcServer TpcServer.cc)
target_link_libraries(TpcServer jsoncpp)
add_executable(Client Client.cc)
target_link_libraries(Client jsoncpp)
5. 改进
listen分离
将TpcServer里的listen套接字提出来单独成一个类,将Accpeter获取连接的函数放到这个类,通过AddCpnnection函数加入关注,这个类就做listen的连接管理。这样做的好处是可以将listen连接也作为一个正常连接统一处理
后续的设计可以加入多线程,主线程维护vector,里面是获得的连接fd,线程之间通信,争取这个fd会话,每一个线程也是一个Ractor,也可以负载均衡式的分配连接。这样就可以加入多线程,同时每个连接的报文内容处理如果比较复杂,可以交由线程池来处理,只需要拿到结果
这种一个连接一个reacotr,叫one thread one loop
连接管理
对于一些不活跃的连接需要处理。使用一个定时器类,里面保存一个最小堆,存每个连接的超时时间,可以回指connection和tpcserver做更多开发。在主循环每次事件分配后可以做一些其他事情,就是查询超时连接,如果有可以走错误处理,关闭这个链接。同时,事件分配的等待时间可以设置为堆顶的超时时间
6. Reactor的理论
它是一个半同步半异步的模型,类似于打地鼠,监测哪个链接有事件就处理哪个。同步体现在事件的就绪是需要等,异步体现在回调函数,如果不想自己做,可以交由线程处理,比如报文的处理可以由线程来,直接取得结果。这种叫反应堆