聊聊ChatGLM-6B的源码分析

news2025/1/16 4:58:06

基于ChatGLM-6B第一版,要注意还有ChatGLM2-6B以及ChatGLM3-6B

PrefixEncoder

作用:在微调时(以P-Tuning V2为例),方法训练时冻结模型的全部参数,只激活PrefixEncoder的参数。
其源码如下,整体来看是比较简单的。

class PrefixEncoder(torch.nn.Module):
    def __init__(self, config):
        super().__init__()
        self.prefix_projection = config.prefix_projection
        if self.prefix_projection:
            # 使用一个两层(线性层)的MLP编码prefix
            self.embedding = torch.nn.Embedding(config.pre_seq_len, config.hidden_size)
            self.trans = torch.nn.Sequential(
                torch.nn.Linear(config.hidden_size, config.hidden_size),
                torch.nn.Tanh(),
                torch.nn.Linear(config.hidden_size, config.num_layers * config.hidden_size * 2)
            )
        else:
            self.embedding = torch.nn.Embedding(config.pre_seq_len, config.num_layers * config.hidden_size * 2)

    def forward(self, prefix: torch.Tensor):
        if self.prefix_projection:
            prefix_tokens = self.embedding(prefix)
            past_key_values = self.trans(prefix_tokens)
        else:
            past_key_values = self.embedding(prefix)
        return past_key_values


为什么源码注释中会说到MLP?定位追溯:

self.mlp = GLU(
    hidden_size,
    inner_hidden_size=inner_hidden_size,
    bias=use_bias,
    layer_id=layer_id,
    params_dtype=params_dtype,
    empty_init=empty_init
)

def default_init(cls, *args, **kwargs):
    return cls(*args, **kwargs)

class GLU(torch.nn.Module):
    def __init__(self, hidden_size, inner_hidden_size=None,
                 layer_id=None, bias=True, activation_func=gelu, params_dtype=torch.float, empty_init=True):
        super(GLU, self).__init__()
        if empty_init:
            init_method = skip_init
        else:
            init_method = default_init
        self.layer_id = layer_id
        self.activation_func = activation_func

        # Project to 4h.
        self.hidden_size = hidden_size
        if inner_hidden_size is None:
            inner_hidden_size = 4 * hidden_size
        self.inner_hidden_size = inner_hidden_size
        self.dense_h_to_4h = init_method(
            torch.nn.Linear,
            self.hidden_size,
            self.inner_hidden_size,
            bias=bias,
            dtype=params_dtype,
        )
        # Project back to h.
        self.dense_4h_to_h = init_method(
            torch.nn.Linear,
            self.inner_hidden_size,
            self.hidden_size,
            bias=bias,
            dtype=params_dtype,
        )

    def forward(self, hidden_states):
        """
        hidden_states: [seq_len, batch, hidden_size]
        """

        # [seq_len, batch, inner_hidden_size]
        intermediate_parallel = self.dense_h_to_4h(hidden_states)

        intermediate_parallel = self.activation_func(intermediate_parallel)

        output = self.dense_4h_to_h(intermediate_parallel)

        return output

# 转载请备注出处:https://www.cnblogs.com/zhiyong-ITNote/


init_method对应到default_init,这个函数的作用与直接调用类构造函数相同,但它提供了一种更灵活的方式来创建类的实例,因为它可以接受任意数量的位置参数和关键字参数。在Pytorch中,用于模块化的构造函数。从源码分析来看,GLU/MLP类就是构造了两个线性层与gelu激活函数,其结构可简化如下:

PrefixEncoder类的初始化方法来看,其就是embedding层与MLP的组合。其结构可简化如下:

Q:在这里还有一个问题,从哪里可以定位溯源到微调时禁用了全部的参数,只激活PrefixEncoder的参数并调用了该类?

激活函数与位置编码

代码简单明了,RoPE的理论知识可以多了解。

attention_fn

伪代码表示为:

def attention_fn(
        self,
        query_layer,
        key_layer,
        value_layer,
        attention_mask,
        hidden_size_per_partition,
        layer_id,
        layer_past=None,
        scaling_attention_score=True,
        use_cache=False,
):
    xxxx

标准的注意力机制计算公式如下:
在这里插入图片描述

多头注意力就是将多个单头注意力的结果拼接起来,再点乘一个新的权重参数。

在这里插入图片描述

attention_fn函数实现了注意力的核心计算过程(即上述数学表达式),包括计算注意力分数、注意力概率和上下文层。这些计算对于实现许多自然语言处理任务,如语言建模、命名实体识别等,都是非常重要的。

SelfAttention

伪代码表示为:

class SelfAttention(torch.nn.Module):
    xxxx

attention_mask_func将注意力掩码应用于Transformer模型中的注意力得分中。

@staticmethod
def attention_mask_func(attention_scores, attention_mask):
    attention_scores.masked_fill_(attention_mask, -10000.0)
    return attention_scores

apply_rotary_pos_emb_index函数为Q,K注入了RoPE位置信息,然后调用attention_fn计算注意力概率、上下文层表示,并得到返回值。这些都是在forward函数中调用处理的。
image.png
最后还调用了dense对上下文表示做线性计算,返回输出。

GLU

GLU也可以理解为是MLP,在后面版本的ChatGLM中,去掉了GLU类的定义声明,直接换成了MLP。在上面已经写过不再赘述。

GLMBlock

一般都会把GLMBlock对应为transformer结构的实现。从其构造函数来看,主要是拼接各个层到一起。

从代码来看,中间有两次的残差连接,如下所示

# Residual connection.
alpha = (2 * self.num_layers) ** 0.5
hidden_states = attention_input * alpha + attention_output

mlp_input = self.post_attention_layernorm(hidden_states)

# MLP.
mlp_output = self.mlp(mlp_input)

# Second residual connection.
output = mlp_input * alpha + mlp_output

最后

感谢你们的阅读和喜欢,我收藏了很多技术干货,可以共享给喜欢我文章的朋友们,如果你肯花时间沉下心去学习,它们一定能帮到你。

因为这个行业不同于其他行业,知识体系实在是过于庞大,知识更新也非常快。作为一个普通人,无法全部学完,所以我们在提升技术的时候,首先需要明确一个目标,然后制定好完整的计划,同时找到好的学习方法,这样才能更快的提升自己。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

五、面试资料

我们学习AI大模型必然是想找到高薪的工作,下面这些面试题都是总结当前最新、最热、最高频的面试题,并且每道题都有详细的答案,面试前刷完这套面试题资料,小小offer,不在话下。
在这里插入图片描述

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1972564.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python数值计算(16)——Hermite插值

1. 概述 不管是前面介绍到拉格朗日插值还是牛顿插值,拟合的函数比线性插值更加“优秀”,即它们都是连续可导的,但是,有时拟合还有这样的要求,就是除了在给定点处的函数值要相等外,还要求在这些指定点处的导…

fastjson-小于1.2.47绕过

参考视频&#xff1a;fastjson反序列化漏洞3-<1.2.47绕过_哔哩哔哩_bilibili 分析版本 fastjson1.2.24 JDK 8u141 分析流程 分析fastjson1.2.25更新的源码&#xff0c;用JsonBcel链跟进 先看修改的地方 fastjson1.2.24 if (key JSON.DEFAULT_TYPE_KEY && !…

鸿蒙(API 12 Beta2版)NDK开发【JSVM-API简介】

JSVM-API简介 场景介绍 HarmonyOS JSVM-API是基于标准JS引擎提供的一套稳定的ABI&#xff0c;为开发者提供了较为完整的JS引擎能力&#xff0c;包括创建和销毁引擎&#xff0c;执行JS代码&#xff0c;JS/C交互等关键能力。 通过JSVM-API&#xff0c;开发者可以在应用运行期间…

大语言模型时代的挑战与机遇:青年发展、教育变革与就业前景

摘要: 当前,大语言模型技术的崛起正在对多个领域带来深远影响,其中教育与就业便是重点受影响领域之一。本文旨在深入探究大语言模型对青年群体发展、教育体系变革以及就业前景的影响,并提出相应的应对措施与建议。 通过运用社会认知理论、建构主义教育理论、技能匹配理论等学…

基于单片机的多功能视力保护器设计

摘要&#xff1a;眼睛是人心灵的窗户&#xff0c;现在信息网络技术的发展&#xff0c;手机成了人们的必备之物&#xff0c;青少年不良的习惯导致现在视力问题严重。越来越多的视力保护产品得到了研发&#xff0c;其中基于单片机的新型视力保护装置&#xff0c;为视力保护产生了…

作用域和链接属性

是什么决定了两个同名变量是否会发生冲突&#xff1f; 是作用域。 goto 语句的作用域是&#xff1f;答&#xff1a;goto 语句受函数作用域&#xff08;function scope&#xff09;所限制&#xff0c;因此 goto 语句仅能在函数体内部跳转&#xff0c;不能跨函数跳跃。 全局变…

【雅思报考流程】教你报名雅思考试 | 保姆级雅思报考指导教程!

官网 1.注册 首先进行注册 剩下正常填写即可&#xff0c;注册完毕会给邮箱发送确认邮件需要确认一下以及用户号这个很重要需要妥善保存 2.充值 会看到不同的类别&#xff0c;其中雅思考试费第一个是标准的雅思考试&#xff0c;第二个是英国签证的UKVI要看去英国上不上语言…

精通推荐算法16:特征交叉之PNN

1 背景 Deep Crossing通过“Embedding MLP”的范式&#xff0c;奠定了深度学习在推荐算法中的重要地位&#xff0c;引领了一股学术界和工业界不断应用和优化深度学习推荐算法的风潮。上海交通大学提出了PNN模型&#xff0c;通过在Embedding层之后引入一个Product层&#xff0…

实战大数据:分布式大数据分析处理系统的开发与应用

&#x1f482; 个人网站:【 摸鱼游戏】【网址导航】【神级代码资源网站】&#x1f91f; 一站式轻松构建小程序、Web网站、移动应用&#xff1a;&#x1f449;注册地址&#x1f91f; 基于Web端打造的&#xff1a;&#x1f449;轻量化工具创作平台&#x1f485; 想寻找共同学习交…

对 Redis 的认识还停留在 4.x 版本?7.0 全新特性很惊艳!

我是码哥&#xff0c;可以叫我靓仔。我人生中的第一本书《Redis 高手心法》出版了&#xff01; 作为当今广受欢迎的内存数据库&#xff0c;Redis 以其卓越的性能和广泛的应用场景著称。 掌握 Redis 技术几乎成为每位开发人员、测试人员和运维人员的看家本领&#xff01; 大约…

查物流信息用什么软件

在电子商务日益繁荣的今天&#xff0c;快递物流信息的查询成为了我们日常生活中不可或缺的一部分。无论是网购达人还是商家&#xff0c;都需要随时掌握货物的物流动态。然而&#xff0c;如何快速、准确地查询物流信息却是一个令人头疼的问题。今天&#xff0c;我将为大家介绍一…

使用ASH诊断Oracle解析故障

英文原文在&#xff1a;Diagnosing Parsing Issue with ASH 解析&#xff0c;尤其是硬解析&#xff0c;是非生产性操作&#xff0c;会消耗大量系统资源&#xff0c;导致库缓存争用。ASH&#xff08;Active Session History&#xff09;可以通过其采样机制来诊断和分析过度的解…

MySQL--插入、更新与删除数据

前言&#xff1a;本博客仅作记录学习使用&#xff0c;部分图片出自网络&#xff0c;如有侵犯您的权益&#xff0c;请联系删除 一、插入数据 1、为表的所有字段插入数据 使用基本的INSERT语句插入数据要求指定表名称和插入到新记录中的值&#xff0c;其语法&#xff1a; inser…

Gradle 统一管理依赖

BOM 介绍 BOM 是 Bill of Material 的简写&#xff0c;表示物料清单。BOM 使我们在使用 Maven 或 Gradle 构建项目时对于依赖版本的统一变得更加规范&#xff0c;升级依赖版本更容易。 比如我们使用 SpringBoot 和 SpringCloud 做项目时&#xff0c;可以使用他们发布的 BOM …

CIFAR-10 数据集图像分类与可视化

数据准备 CIFAR-10 and CIFAR-100 datasets (toronto.edu)在上述网站中下载Python版本的CIFAR-10数据集。 下载后的压缩包解压后会得到几个文件如下&#xff1a; 对应的data_batch_1 ~ data_batch_5 是划分好的训练数据&#xff0c;每个文件里包含10000张图片&#xff0c;test…

基于SpringBoot + Vue的前后端分离项目-外包平台

项目名称&#xff1a;外包平台 作者的B站地址&#xff1a;程序员云翼的个人空间-程序员云翼个人主页-哔哩哔哩视频 csdn地址&#xff1a;程序员云翼-CSDN博客 1.项目技术栈&#xff1a; 前后端分离的项目 后端&#xff1a;Springboot MybatisPlus 前端&#xff1a;Vue …

达梦数据库安装(DM8)新版 windows11下安装及超详细使用教程

windows11下达梦数据库安装 1、安装参考链接2、存在问题2.1新建表空间失败&#xff0c;详情错误号: -70142.2创建表、视图等 1、安装参考链接 https://blog.csdn.net/u014096024/article/details/134722013 2、存在问题 2.1新建表空间失败&#xff0c;详情错误号: -7014 解决…

掌握 LINQ:通过示例解释 C# 中强大的 LINQ的集运算

文章目录 集运算符原理实战示例1. Union2. Intersect3. Except4. ExceptWith5. Concat6. Distinct 注意事项总结 在C#中&#xff0c;LINQ&#xff08;Language Integrated Query&#xff09;提供了丰富的集合操作功能&#xff0c;使得对集合数据进行查询、过滤、排序等操作变得…

从程序员视角浅入浅出了解计算机硬件——内存

前言 内存(Memory)是计算机的重要部件&#xff0c;用于存储数据和指令的重要组件&#xff0c;是冯诺依曼计算机中是的存储器部分。作为与CPU进行沟通的桥梁&#xff0c;内存用于临时存储计CPU中的运算数据&#xff0c;以及与硬盘、网卡等外部组件数据&#xff0c;以便CPU能够快…