政安晨:【Keras机器学习示例演绎】(五十七)—— 基于Transformer的推荐系统

news2024/12/26 11:27:10

目录

介绍

数据集

设置

准备数据

将电影评分数据转换为序列

定义元数据

创建用于训练和评估的 tf.data.Dataset

创建模型输入

输入特征编码

创建 BST 模型

开展培训和评估实验


政安晨的个人主页:政安晨

欢迎 👍点赞✍评论⭐收藏

希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正!

本文目标:在 Movielens 上使用行为序列转换器(BST)模型预测评级率。

介绍

本示例使用 Movielens 数据集演示了陈启伟等人的行为序列转换器(BST)模型。 BST 模型利用用户观看电影和给电影评分的顺序行为,以及用户资料和电影特征,来预测用户对目标电影的评分。

更确切地说,BST 模型旨在通过接受以下输入来预测目标电影的评分:

  1. 用户观看过的电影的固定长度序列。
  2. 用户观看过的电影评分的固定长度序列。
  3. 输入序列中每部电影和目标电影的类型集。
  4. 输入序列中每部电影和目标电影的类型集。
  5. 要预测评分的 target_movie_id。

该示例以下列方式修改了原始 BST 模型:

1. 我们在处理输入序列中的每部电影和目标电影的嵌入过程中都加入了电影特征(流派),而不是将其视为转换层之外的 "其他特征"。

2. 我们利用输入序列中电影的评分以及它们在序列中的位置来更新它们,然后再将它们输入自我关注层。

请注意,本示例应在 TensorFlow 2.4 或更高版本中运行。

数据集

我们使用的是 Movielens 数据集的 1M 版本。 该数据集包含 6000 名用户对 4000 部电影的约 100 万个评分,以及一些用户特征和电影类型。 此外,数据集还提供了每个用户对电影评分的时间戳,这样就可以按照 BST 模型的预期,为每个用户创建电影评分序列。

设置

import os

os.environ["KERAS_BACKEND"] = "tensorflow"

import math
from zipfile import ZipFile
from urllib.request import urlretrieve

import keras
import numpy as np
import pandas as pd
import tensorflow as tf
from keras import layers
from keras.layers import StringLookup

准备数据

下载并准备数据框

首先,让我们下载 movielens 数据。

下载的文件夹将包含三个数据文件:users.dat、movies.dat 和 ratings.dat。

urlretrieve("http://files.grouplens.org/datasets/movielens/ml-1m.zip", "movielens.zip")
ZipFile("movielens.zip", "r").extractall()

然后,我们用正确的列名将数据加载到 pandas DataFrames 中。

users = pd.read_csv(
    "ml-1m/users.dat",
    sep="::",
    names=["user_id", "sex", "age_group", "occupation", "zip_code"],
    encoding="ISO-8859-1",
    engine="python",
)

ratings = pd.read_csv(
    "ml-1m/ratings.dat",
    sep="::",
    names=["user_id", "movie_id", "rating", "unix_timestamp"],
    encoding="ISO-8859-1",
    engine="python",
)

movies = pd.read_csv(
    "ml-1m/movies.dat",
    sep="::",
    names=["movie_id", "title", "genres"],
    encoding="ISO-8859-1",
    engine="python",
)

在此,我们进行一些简单的数据处理,以固定列的数据类型。

users["user_id"] = users["user_id"].apply(lambda x: f"user_{x}")
users["age_group"] = users["age_group"].apply(lambda x: f"group_{x}")
users["occupation"] = users["occupation"].apply(lambda x: f"occupation_{x}")

movies["movie_id"] = movies["movie_id"].apply(lambda x: f"movie_{x}")

ratings["movie_id"] = ratings["movie_id"].apply(lambda x: f"movie_{x}")
ratings["user_id"] = ratings["user_id"].apply(lambda x: f"user_{x}")
ratings["rating"] = ratings["rating"].apply(lambda x: float(x))

每部电影都有多种类型。 我们将它们分成电影 DataFrame 中的不同列。

genres = ["Action", "Adventure", "Animation", "Children's", "Comedy", "Crime"]
genres += ["Documentary", "Drama", "Fantasy", "Film-Noir", "Horror", "Musical"]
genres += ["Mystery", "Romance", "Sci-Fi", "Thriller", "War", "Western"]

for genre in genres:
    movies[genre] = movies["genres"].apply(
        lambda values: int(genre in values.split("|"))
    )

将电影评分数据转换为序列

首先,我们使用 unix_timestamp 对评分数据进行排序,然后按用户 ID 对电影 ID 值和评分值进行分组。

ratings_group = ratings.sort_values(by=["unix_timestamp"]).groupby("user_id")

ratings_data = pd.DataFrame(
    data={
        "user_id": list(ratings_group.groups.keys()),
        "movie_ids": list(ratings_group.movie_id.apply(list)),
        "ratings": list(ratings_group.rating.apply(list)),
        "timestamps": list(ratings_group.unix_timestamp.apply(list)),
    }
)

现在,让我们把 movie_ids 列表拆分成一组固定长度的序列。 我们对评分也做同样的处理。 设置 sequence_length 变量可改变模型输入序列的长度。 您还可以改变 step_size 来控制为每个用户生成的序列数量。

sequence_length = 4
step_size = 2


def create_sequences(values, window_size, step_size):
    sequences = []
    start_index = 0
    while True:
        end_index = start_index + window_size
        seq = values[start_index:end_index]
        if len(seq) < window_size:
            seq = values[-window_size:]
            if len(seq) == window_size:
                sequences.append(seq)
            break
        sequences.append(seq)
        start_index += step_size
    return sequences


ratings_data.movie_ids = ratings_data.movie_ids.apply(
    lambda ids: create_sequences(ids, sequence_length, step_size)
)

ratings_data.ratings = ratings_data.ratings.apply(
    lambda ids: create_sequences(ids, sequence_length, step_size)
)

del ratings_data["timestamps"]

然后,我们对输出进行处理,使每个序列在 DataFrame 中都有单独的记录。 此外,我们还将用户特征与评分数据结合起来。

ratings_data_movies = ratings_data[["user_id", "movie_ids"]].explode(
    "movie_ids", ignore_index=True
)
ratings_data_rating = ratings_data[["ratings"]].explode("ratings", ignore_index=True)
ratings_data_transformed = pd.concat([ratings_data_movies, ratings_data_rating], axis=1)
ratings_data_transformed = ratings_data_transformed.join(
    users.set_index("user_id"), on="user_id"
)
ratings_data_transformed.movie_ids = ratings_data_transformed.movie_ids.apply(
    lambda x: ",".join(x)
)
ratings_data_transformed.ratings = ratings_data_transformed.ratings.apply(
    lambda x: ",".join([str(v) for v in x])
)

del ratings_data_transformed["zip_code"]

ratings_data_transformed.rename(
    columns={"movie_ids": "sequence_movie_ids", "ratings": "sequence_ratings"},
    inplace=True,
)

在 sequence_length 为 4、step_size 为 2 的情况下,我们最终得到了 498 623 个序列。 最后,我们将数据分成训练和测试两个部分,分别包含 85% 和 15% 的实例,并将它们存储到 CSV 文件中。

random_selection = np.random.rand(len(ratings_data_transformed.index)) <= 0.85
train_data = ratings_data_transformed[random_selection]
test_data = ratings_data_transformed[~random_selection]

train_data.to_csv("train_data.csv", index=False, sep="|", header=False)
test_data.to_csv("test_data.csv", index=False, sep="|", header=False)

定义元数据

CSV_HEADER = list(ratings_data_transformed.columns)

CATEGORICAL_FEATURES_WITH_VOCABULARY = {
    "user_id": list(users.user_id.unique()),
    "movie_id": list(movies.movie_id.unique()),
    "sex": list(users.sex.unique()),
    "age_group": list(users.age_group.unique()),
    "occupation": list(users.occupation.unique()),
}

USER_FEATURES = ["sex", "age_group", "occupation"]

MOVIE_FEATURES = ["genres"]

创建用于训练和评估的 tf.data.Dataset

def get_dataset_from_csv(csv_file_path, shuffle=False, batch_size=128):
    def process(features):
        movie_ids_string = features["sequence_movie_ids"]
        sequence_movie_ids = tf.strings.split(movie_ids_string, ",").to_tensor()

        # The last movie id in the sequence is the target movie.
        features["target_movie_id"] = sequence_movie_ids[:, -1]
        features["sequence_movie_ids"] = sequence_movie_ids[:, :-1]

        ratings_string = features["sequence_ratings"]
        sequence_ratings = tf.strings.to_number(
            tf.strings.split(ratings_string, ","), tf.dtypes.float32
        ).to_tensor()

        # The last rating in the sequence is the target for the model to predict.
        target = sequence_ratings[:, -1]
        features["sequence_ratings"] = sequence_ratings[:, :-1]

        return features, target

    dataset = tf.data.experimental.make_csv_dataset(
        csv_file_path,
        batch_size=batch_size,
        column_names=CSV_HEADER,
        num_epochs=1,
        header=False,
        field_delim="|",
        shuffle=shuffle,
    ).map(process)

    return dataset

创建模型输入

def create_model_inputs():
    return {
        "user_id": keras.Input(name="user_id", shape=(1,), dtype="string"),
        "sequence_movie_ids": keras.Input(
            name="sequence_movie_ids", shape=(sequence_length - 1,), dtype="string"
        ),
        "target_movie_id": keras.Input(
            name="target_movie_id", shape=(1,), dtype="string"
        ),
        "sequence_ratings": keras.Input(
            name="sequence_ratings", shape=(sequence_length - 1,), dtype=tf.float32
        ),
        "sex": keras.Input(name="sex", shape=(1,), dtype="string"),
        "age_group": keras.Input(name="age_group", shape=(1,), dtype="string"),
        "occupation": keras.Input(name="occupation", shape=(1,), dtype="string"),
    }

输入特征编码

输入特征编码方法的工作原理如下:

每个分类用户特征都使用层嵌入(layer.Embedding)编码,嵌入维度等于特征词汇量的平方根。

电影序列中的每部电影和目标电影都使用层.嵌入编码,嵌入维度等于电影数量的平方根。

每部电影的多热点流派向量与其嵌入向量连接,并使用非线性层.密集处理,以输出具有相同电影嵌入维度的向量。
将位置嵌入添加到序列中的每个电影嵌入中,然后乘以评分序列中的评分。

将目标电影嵌入与序列电影嵌入连接起来,产生一个张量,其形状为[批量大小、序列长度、嵌入大小],正如转换器架构的注意层所预期的那样。

该方法返回一个由两个元素组成的元组:编码转换器特征和编码其他特征。

def encode_input_features(
    inputs,
    include_user_id=True,
    include_user_features=True,
    include_movie_features=True,
):
    encoded_transformer_features = []
    encoded_other_features = []

    other_feature_names = []
    if include_user_id:
        other_feature_names.append("user_id")
    if include_user_features:
        other_feature_names.extend(USER_FEATURES)

    ## Encode user features
    for feature_name in other_feature_names:
        # Convert the string input values into integer indices.
        vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY[feature_name]
        idx = StringLookup(vocabulary=vocabulary, mask_token=None, num_oov_indices=0)(
            inputs[feature_name]
        )
        # Compute embedding dimensions
        embedding_dims = int(math.sqrt(len(vocabulary)))
        # Create an embedding layer with the specified dimensions.
        embedding_encoder = layers.Embedding(
            input_dim=len(vocabulary),
            output_dim=embedding_dims,
            name=f"{feature_name}_embedding",
        )
        # Convert the index values to embedding representations.
        encoded_other_features.append(embedding_encoder(idx))

    ## Create a single embedding vector for the user features
    if len(encoded_other_features) > 1:
        encoded_other_features = layers.concatenate(encoded_other_features)
    elif len(encoded_other_features) == 1:
        encoded_other_features = encoded_other_features[0]
    else:
        encoded_other_features = None

    ## Create a movie embedding encoder
    movie_vocabulary = CATEGORICAL_FEATURES_WITH_VOCABULARY["movie_id"]
    movie_embedding_dims = int(math.sqrt(len(movie_vocabulary)))
    # Create a lookup to convert string values to integer indices.
    movie_index_lookup = StringLookup(
        vocabulary=movie_vocabulary,
        mask_token=None,
        num_oov_indices=0,
        name="movie_index_lookup",
    )
    # Create an embedding layer with the specified dimensions.
    movie_embedding_encoder = layers.Embedding(
        input_dim=len(movie_vocabulary),
        output_dim=movie_embedding_dims,
        name=f"movie_embedding",
    )
    # Create a vector lookup for movie genres.
    genre_vectors = movies[genres].to_numpy()
    movie_genres_lookup = layers.Embedding(
        input_dim=genre_vectors.shape[0],
        output_dim=genre_vectors.shape[1],
        embeddings_initializer=keras.initializers.Constant(genre_vectors),
        trainable=False,
        name="genres_vector",
    )
    # Create a processing layer for genres.
    movie_embedding_processor = layers.Dense(
        units=movie_embedding_dims,
        activation="relu",
        name="process_movie_embedding_with_genres",
    )

    ## Define a function to encode a given movie id.
    def encode_movie(movie_id):
        # Convert the string input values into integer indices.
        movie_idx = movie_index_lookup(movie_id)
        movie_embedding = movie_embedding_encoder(movie_idx)
        encoded_movie = movie_embedding
        if include_movie_features:
            movie_genres_vector = movie_genres_lookup(movie_idx)
            encoded_movie = movie_embedding_processor(
                layers.concatenate([movie_embedding, movie_genres_vector])
            )
        return encoded_movie

    ## Encoding target_movie_id
    target_movie_id = inputs["target_movie_id"]
    encoded_target_movie = encode_movie(target_movie_id)

    ## Encoding sequence movie_ids.
    sequence_movies_ids = inputs["sequence_movie_ids"]
    encoded_sequence_movies = encode_movie(sequence_movies_ids)
    # Create positional embedding.
    position_embedding_encoder = layers.Embedding(
        input_dim=sequence_length,
        output_dim=movie_embedding_dims,
        name="position_embedding",
    )
    positions = tf.range(start=0, limit=sequence_length - 1, delta=1)
    encodded_positions = position_embedding_encoder(positions)
    # Retrieve sequence ratings to incorporate them into the encoding of the movie.
    sequence_ratings = inputs["sequence_ratings"]
    sequence_ratings = keras.ops.expand_dims(sequence_ratings, -1)
    # Add the positional encoding to the movie encodings and multiply them by rating.
    encoded_sequence_movies_with_poistion_and_rating = layers.Multiply()(
        [(encoded_sequence_movies + encodded_positions), sequence_ratings]
    )

    # Construct the transformer inputs.
    for i in range(sequence_length - 1):
        feature = encoded_sequence_movies_with_poistion_and_rating[:, i, ...]
        feature = keras.ops.expand_dims(feature, 1)
        encoded_transformer_features.append(feature)
    encoded_transformer_features.append(encoded_target_movie)

    encoded_transformer_features = layers.concatenate(
        encoded_transformer_features, axis=1
    )

    return encoded_transformer_features, encoded_other_features

创建 BST 模型

include_user_id = False
include_user_features = False
include_movie_features = False

hidden_units = [256, 128]
dropout_rate = 0.1
num_heads = 3


def create_model():
    inputs = create_model_inputs()
    transformer_features, other_features = encode_input_features(
        inputs, include_user_id, include_user_features, include_movie_features
    )

    # Create a multi-headed attention layer.
    attention_output = layers.MultiHeadAttention(
        num_heads=num_heads, key_dim=transformer_features.shape[2], dropout=dropout_rate
    )(transformer_features, transformer_features)

    # Transformer block.
    attention_output = layers.Dropout(dropout_rate)(attention_output)
    x1 = layers.Add()([transformer_features, attention_output])
    x1 = layers.LayerNormalization()(x1)
    x2 = layers.LeakyReLU()(x1)
    x2 = layers.Dense(units=x2.shape[-1])(x2)
    x2 = layers.Dropout(dropout_rate)(x2)
    transformer_features = layers.Add()([x1, x2])
    transformer_features = layers.LayerNormalization()(transformer_features)
    features = layers.Flatten()(transformer_features)

    # Included the other features.
    if other_features is not None:
        features = layers.concatenate(
            [features, layers.Reshape([other_features.shape[-1]])(other_features)]
        )

    # Fully-connected layers.
    for num_units in hidden_units:
        features = layers.Dense(num_units)(features)
        features = layers.BatchNormalization()(features)
        features = layers.LeakyReLU()(features)
        features = layers.Dropout(dropout_rate)(features)

    outputs = layers.Dense(units=1)(features)
    model = keras.Model(inputs=inputs, outputs=outputs)
    return model


model = create_model()

开展培训和评估实验

# Compile the model.
model.compile(
    optimizer=keras.optimizers.Adagrad(learning_rate=0.01),
    loss=keras.losses.MeanSquaredError(),
    metrics=[keras.metrics.MeanAbsoluteError()],
)

# Read the training data.
train_dataset = get_dataset_from_csv("train_data.csv", shuffle=True, batch_size=265)

# Fit the model with the training data.
model.fit(train_dataset, epochs=5)

# Read the test data.
test_dataset = get_dataset_from_csv("test_data.csv", batch_size=265)

# Evaluate the model on the test data.
_, rmse = model.evaluate(test_dataset, verbose=0)
print(f"Test MAE: {round(rmse, 3)}")
Epoch 1/5
 1600/1600 ━━━━━━━━━━━━━━━━━━━━ 19s 11ms/step - loss: 1.5762 - mean_absolute_error: 0.9892
Epoch 2/5
 1600/1600 ━━━━━━━━━━━━━━━━━━━━ 17s 11ms/step - loss: 1.1263 - mean_absolute_error: 0.8502
Epoch 3/5
 1600/1600 ━━━━━━━━━━━━━━━━━━━━ 17s 11ms/step - loss: 1.0885 - mean_absolute_error: 0.8361
Epoch 4/5
 1600/1600 ━━━━━━━━━━━━━━━━━━━━ 17s 11ms/step - loss: 1.0943 - mean_absolute_error: 0.8388
Epoch 5/5
 1600/1600 ━━━━━━━━━━━━━━━━━━━━ 17s 10ms/step - loss: 1.0360 - mean_absolute_error: 0.8142
Test MAE: 0.782

测试数据的平均绝对误差 (MAE) 应该在 0.7 左右。


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1969783.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Python 中的 “私有”(实现)类

在 Python 中&#xff0c;尽管没有严格意义上的私有类&#xff08;private class&#xff09;&#xff0c;但可以通过命名约定和语言特性来模拟实现类似的访问控制。Python 的私有类的概念通常是通过以下几种方式来实现&#xff1a; 1、问题背景 我正在编码一个由两部分组成的…

数值分析——分段低次插值

关键字&#xff1a;Matalb&#xff1b;曲线拟合&#xff1b;高次病态特性&#xff1b;分段低次插值 系列文章目录 数值分析——拉格朗日插值 数值分析——牛顿插值多项式 数值分析——埃尔米特&#xff08;Hermit&#xff09;插值 文章目录 系列文章目录前言一、理论推导1.高次…

Python面试宝典第25题:括号生成

题目 数字n代表生成括号的对数&#xff0c;请设计一个函数&#xff0c;用于能够生成所有可能的并且有效的括号组合。 备注&#xff1a;1 < n < 8。 示例 1&#xff1a; 输入&#xff1a;n 3 输出&#xff1a;["((()))","(()())","(())()"…

泛化的最近点迭代法(Generalized-ICP)

Generalized-ICP算法是由斯坦福大学的Aleksandr V. Segal、Dirk Haehnel和Sebastian Thrun提出的&#xff0c;于2009年在Robotics science and system会议上发表。 GICP是一种ICP算法的变体&#xff0c;其原理与ICP算法相同&#xff0c;之所以称为泛化的ICP算法是因为大多数ICP…

MongoDB性能调优

文章目录 MongoDB性能调优MongoDB性能不佳原因影响MongoDB性能的因素MongoDB性能监控工具mongostatmongotopProfiler模块db.currentOp() MongoDB性能调优 MongoDB性能不佳原因 慢查询阻塞等待硬件资源不足 1,2通常是因为模型/索引设计不佳导致的 排查思路&#xff1a;按1-2…

再论国产数据库的选择

如何选择国产数据库? 上篇写得很水,本来不想继续写了! 毕竟写一篇很费心力,大家觉得好,就点下广告支持下吧! 因为今天看到类总的朋友圈,发个公号文章.里面讲个故事, 数据最前线 关注数据生态&#xff0c;讲述开源故事 13篇原创内容 公众号 某国产数据库救援现场惊魂8小时…

Golang | Leetcode Golang题解之第313题超级丑数

题目&#xff1a; 题解&#xff1a; func nthSuperUglyNumber(n int, primes []int) int {dp : make([]int, n1)m : len(primes)pointers : make([]int, m)nums : make([]int, m)for i : range nums {nums[i] 1}for i : 1; i < n; i {minNum : math.MaxInt64for j : range…

【大模型框架】【推理加速】KV CACHE

1. 思想 核心思想是空间换时间来进行加速 2. 基本原理 transformer是自回归生成模型&#xff0c;abc三个字符预测def 过程是: abc -> d d进行回归得到abc,回归讲究的是回去&#xff0c;如香港回归 abcd -> e 这里abc的运算中间值Q V可以保存下来作为Cache&#xf…

爬猫眼电ying

免责声明:本文仅做分享... 未优化,dp简单实现 from DrissionPage import ChromiumPage import time urlhttps://www.maoyan.com/films?showType2&offset60 pageChromiumPage()page.get(url) time.sleep(2) for i in range(1,20):# 爬取的页数for iu_list in page.eles(.…

c语言指针中“数组名的理解”以及“一维数组传参”的本质

数组名的理解 数组名就是数组首元素的地址。 例如&#xff1a;输入一个数组的所有元素&#xff0c;再打印出来。 另一种写法 以上可以看出&#xff1a;*arri&#xff09; arr[i] 也即是&#xff1a;*(iarr)i[arr] 本质上无区别 1&#xff1a;数组就是数组&#xff0c;是一块…

List 31

ArrayList底层原理 Linkedlist的底层原理 使用场景

扎克伯格说Meta训练Llama 4所需的计算能力是Llama 3的10倍

Meta 公司开发了最大的基础开源大型语言模型之一 Llama&#xff0c;该公司认为未来将需要更强的计算能力来训练模型。马克-扎克伯格&#xff08;Mark Zuckerberg&#xff09;在本周二的 Meta 第二季度财报电话会议上表示&#xff0c;为了训练 Llama 4&#xff0c;公司需要比训练…

做管理,一定要避开这6个坑,才能成就优秀管理者

做管理&#xff0c;一定要避开这6个坑&#xff0c;才能成就优秀管理者 一、被平庸的员工绑架 要是领导不敢或者不愿意惩罚或者开除那些没完成任务的员工&#xff0c;那优秀的员工就会觉得&#xff0c;做得好做得差都一样&#xff0c;那谁还愿意努力呢&#xff1f; 二、总想改变…

【Mind+】掌控板入门教程01 “秀”出我创意

我们的好朋友麦乐佳即将举办一场派对&#xff0c;她要求每个参加派对的人都要佩戴一个可以彰显自己独特创意的装置。可以是会发光的帽子&#xff0c;可以是复古的电子表&#xff0c;还可以是其他有创意的作品。而现在&#xff0c;我们的手边刚好有一块掌控板&#xff0c;它自带…

汇聚数字智慧 构建新质未来——《CMG数字中国》融媒体节目正式上线

7月25日&#xff0c;由中央广播电视总台上海总站、央视频和数创未来&#xff08;上海&#xff09;传媒科技有限公司联合打造的《CMG数字中国》融媒体节目正式上线。 中国共产党第二十届中央委员会第三次全体会议提出&#xff0c;高质量发展是全面建设社会主义现代化国家的首要…

8.Redis的List类型

Redis中的list跟java中的LinkedList比较相似&#xff0c;可以看做是一个双向链表的结构。 既可以支持正向检索和反向检索。 特点 1.有序 2.元素可以重复 3.插入和删除快 4.查询速度一般 应用场景 点赞和评论功能&#xff0c;都会存在一个顺序&#xff0c;谁先评论&…

AI Agent学习系列:扣子智能体手把手入门教程

AI智能体为什么现在这么火&#xff1f;我个人认为有以下几点原因&#xff1a; 智能体基于大模型而又强于大模型&#xff08;垂直领域&#xff09; 智能体基于零代码或者低代码模式&#xff0c;不需要编程基础&#xff0c;对于非程序员非常友好&#xff0c;使得大多数人都能成…

CoderGuide

CoderGuide是一个针对同学们前后端求职面试的开源项目&#xff0c;作为一名互联网/IT从业人员&#xff0c;经常需要搜索一些书籍、面试题等资源&#xff0c;在这个过程中踩过很多坑、浪费过很多时间。欢迎大家 Watch、Star&#xff0c;供各位同学免费使用&#xff0c;永不收费&…

【Python】pandas:替换值、添加行/列,删除行/列,更改形状(含数据透视表)

pandas是Python的扩展库&#xff08;第三方库&#xff09;&#xff0c;为Python编程语言提供 高性能、易于使用的数据结构和数据分析工具。 pandas官方文档&#xff1a;User Guide — pandas 2.2.2 documentation (pydata.org) 帮助&#xff1a;可使用help(...)查看函数说明文…

9.Redis的Set类型

Redis的Set结构与java中的HashSet类似。 可以看做是一个value为null的HashMap。 特点 1.无序 2.元素不可重复 3.查找快 4.支持交集、并集、差集等功能 应用场景 实现共同关注&#xff0c;共同好友。 常见命令 sadd key 元素1 元素2 给set集合添加一个或多个元素 smem…