静态路由与默认路由和实验以及ARP工作原理

news2024/9/20 20:52:32

目录

1.静态路由和默认路由

1.1 静态路由

1.2 默认路由

1.3 主要区别总结

2.实验

2.1 实验

2.1.1 实验top

2.1.2 实验要求

2.2 实验配置

2.2.1 ip信息配置

2.2.2 配置静态

2.2.3配置默认

2.3 实验结果查看

3.为什么第一个ping会显示丢包?

3.1 ARP 工作机制

3.2 丢包原因

3.3 解决办法

3.4 总结


1.静态路由和默认路由

1.1 静态路由

(1)定义: 静态路由是手动配置的路由,网络管理员明确指定从一个网络到另一个网络的路径

(2)配置方式: 需要手动在路由器上输入具体的路由命令,指定目标网络和下一跳(下一台路由器的地址)。

(3)优点:

  • 安全: 由于手动配置,不容易受到外部影响。
  • 控制: 管理员可以完全控制流量路径。
  • 简单: 在小型网络中配置简单。

(4)缺点:

  • 管理复杂: 对于大型网络,管理和维护变得复杂。
  • 灵活性差: 网络拓扑变化时需要手动更新路由表。

(5)示例:

  • ip route-static 192.168.2.0 24 192.168.1.1
  • 这里,192.168.2.0 24 是目标网络,192.168.1.1 是下一跳路由器的地址。

1.2 默认路由

(1)定义: 默认路由是一种特殊的静态路由,指明数据包在路由表中没有匹配项时应该发送到的路径。

(2)配置方式: 需要手动配置,通常用于将未知目的地的数据包发送到一个上级路由器或网关

(3)优点:

  • 简单: 只需要配置一条默认路由即可覆盖所有未知的目的地。
  • 灵活: 适用于网络中的边缘路由器,连接外部网络(如互联网)。

(4)缺点:

  • 安全风险: 可能会将不必要的流量发送到默认路由指定的网关,增加潜在的安全风险。
  • 依赖性: 默认路由依赖于上级路由器的配置和性能。

(5)示例:

  • ip route-static 0.0.0.0 0 192.168.1.1
  • 这里,0.0.0.0 0表示所有没有在路由表中匹配到的目的地,192.168.1.1 是默认网关的地址(下一跳)。

1.3 主要区别总结

  • 配置方式: 静态路由需要为每个目标网络手动配置,而默认路由只需配置一条用于所有未匹配的目的地。
  • 应用场景: 静态路由多用于网络内部的特定路径控制,默认路由常用于将外部流量引导至一个网关或上级路由器。
  • 管理难度: 静态路由在大型网络中管理复杂,默认路由相对简单。

注意:默认的静态路由只能设置一条,2条的话将导致数据不通。

2.实验

2.1 实验

2.1.1 实验top

2.1.2 实验要求

(1)参考top图,为每个设备配置ip地址。

(2)AR1,AR2,AR3配置静态路由,AR4配置静态,使3个PC互通。

(2)AR1,AR2,AR3更换为默认路由,AR4保持不变,使3个PC互通。

2.2 实验配置

2.2.1 ip信息配置

pc1

pc2

pc3

AR1

<Huawei>system-view

[Huawei]sysname AR1

[AR1]undo info-center enable

[AR1]int g0/0/1

[AR1-GigabitEthernet0/0/1]ip add 192.168.0.254 24

[AR1-GigabitEthernet0/0/1]int g0/0/0

[AR1-GigabitEthernet0/0/0]ip add 100.1.1.1 30

AR2

<Huawei>system-view

[Huawei]sysname AR2

[AR2]int g0/0/0

[AR2-GigabitEthernet0/0/0]ip add 192.168.1.254 24

[AR2-GigabitEthernet0/0/0]int g0/0/1

[AR2-GigabitEthernet0/0/1]ip add 101.1.1.1 30

AR3

<Huawei>sys

Enter system view, return user view with Ctrl+Z.

[Huawei]sys AR3

[AR3]int g0/0/0

[AR3-GigabitEthernet0/0/0]ip add 192.168.2.254 24

[AR3-GigabitEthernet0/0/0]int g0/0/2

[AR3-GigabitEthernet0/0/2]ip add 102.1.1.1 30

AR4

<Huawei>sys

[Huawei]sys AR4

[AR4]int g0/0/0

[AR4-GigabitEthernet0/0/0]ip add 100.1.1.2 30

[AR4-GigabitEthernet0/0/0]int g0/0/1

[AR4-GigabitEthernet0/0/1]ip add 101.1.1.2 30

[AR4-GigabitEthernet0/0/1]int g0/0/2

[AR4-GigabitEthernet0/0/2]ip add 102.1.1.2 30

2.2.2 配置静态

[AR1]ip route-static 0.0.0.0 0 100.1.1.2

[AR2]ip route-static 0.0.0.0 0 101.1.1.2

[AR3]ip route-static 0.0.0.0 0 102.1.1.2

[AR4]ip route-static 192.168.0.0 24 100.1.1.1

[AR4]ip route-static 192.168.1.0 24 101.1.1.1

[AR4]ip route-static 192.168.2.0 24 102.1.1.1

配置完成,做连通性测试,到2.3。

2.2.3配置默认

删除上面配置信息,在前面加undo即可删除。

[AR1]ip route-static 101.1.1.0 255.255.255.252 100.1.1.2

[AR1]ip route-static 102.1.1.0 255.255.255.252 100.1.1.2

[AR1]ip route-static 192.168.1.0 255.255.255.0 101.1.1.2

[AR1]ip route-static 192.168.2.0 255.255.255.0 101.1.1.2

[AR2]ip route-static 100.1.1.0 255.255.255.252 101.1.1.2

[AR2]ip route-static 102.1.1.0 255.255.255.252 101.1.1.2

[AR2]ip route-static 192.168.0.0 255.255.255.0 101.1.1.2

[AR2]ip route-static 192.168.2.0 255.255.255.0 101.1.1.2

[AR3]ip route-static 100.1.1.0 255.255.255.0 102.1.1.2

[AR3]ip route-static 101.1.1.0 255.255.255.0 102.1.1.2

[AR3]ip route-static 192.168.0.0 255.255.255.0 102.1.1.2

[AR3]ip route-static 192.168.1.0 255.255.255.0 102.1.1.2

配置完成,做连通性测试,到2.3。

2.3 实验结果查看

在pc2 ping pc1和pc3做连通测试

pc1 ping pc3

3.为什么第一个ping会显示丢包?

因为第一个包还没有ARP解析

3.1 ARP 工作机制

        当 PC2 发送一个数据包到一个目标 IP 地址(如 192.168.2.1),但它的 ARP 缓存中还没有目标 IP 地址对应的 MAC 地址时,PC2 需要先发送一个 ARP 请求来获取目标的 MAC 地址。这个过程如下:

(1)发送 ARP 请求:

        PC2 发送一个广播 ARP 请求,询问网络中哪台设备拥有 192.168.2.1 的 IP 地址,并要求返回其 MAC 地址。

(2)等待 ARP 响应:

        目标设备(192.168.2.1)收到 ARP 请求后,回应其 MAC 地址。

(3)缓存 ARP 结果:

        PC2 接收到 ARP 响应后,会将 IP-to-MAC 对应关系缓存到 ARP 表中。

(4)继续发送数据包:

        在获取到目标 MAC 地址后,PC2 才能继续将 ICMP(ping)数据包发送到目标设备。

3.2 丢包原因

        在上述过程中,ARP 请求和响应的完成需要时间。如果 PC2 在发送第一个 ping 数据包时还没有完成 ARP 解析,那么这个数据包可能会丢失,因为没有有效的 MAC 地址来发送。

        因此,第一次 ping 出现丢包是因为 ARP 解析过程还未完成,而后续的 ping 请求则由于 ARP 缓存已建立,因此能够正常通信。

3.3 解决办法

(1)忽略首次丢包:

        这是一个正常现象,通常可以忽略首次 ping 的丢包,因为后续的通信将正常进行。

(2)提前触发 ARP:

        如果需要确保没有丢包,可以在测试之前通过其他方式(如手动 ping)触发 ARP 解析,确保 ARP 缓存已建立。

(3)延长超时时间:

        在一些严格的网络环境中,可以调整 ping 的超时时间,以便在 ARP 解析完成后重新发送请求。

3.4 总结

        第一次 ping 丢包通常是由于 ARP 解析未完成,这是正常的网络行为。如果这仅在第一个包上发生,而且后续通信正常,这说明网络配置和通信是正常的。你可以放心继续使用网络而无需进一步担心这个现象。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1965264.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

15.3 zookeeper实现分布式锁

1. 简介 2. 代码演示 2.1 客户端连接类 package com.ruoyi.common.zookeeper;import com.ruoyi.common.exception.UtilException; import

操作系统-硬件结构学习心得

1. 程序执行基本过程 那CPU执行程序的过程如下: ●第一步&#xff0c;CPU读取[程序计数器」的值&#xff0c;这个值是指令的内存地址&#xff0c;然后CPU的「控制单元操作 「地址总线」指定需要访问的内存地址&#xff0c;接着通知内存设备准备数据&#xff0c;数据准备好后通…

【每日刷题】Day90

【每日刷题】Day90 &#x1f955;个人主页&#xff1a;开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 1. 单词缩写_牛客题霸_牛客网 (nowcoder.com) 2. 面试题 01.03. URL化 - 力扣&#xff08;LeetCode&am…

深度剖析Google黑科技RB-Modulation:告别繁琐训练,拥抱无限创意生成和风格迁移!

给定单个参考图像,RB-Modulation提供了一个无需训练的即插即用解决方案,用于(a)风格化和(b)具有各种提示的内容样式组合,同时保持样本多样性和提示对齐。例如,给定参考样式图像(例如“熔化的黄金3d渲染样式”)和内容图像(例如(a)“狗”),RB-Modulation方法可以坚持所需的提…

内存泄漏 与 内存溢出

1.内存溢出(Memory Overflow) 生活样例&#xff1a; 内存容量就像一个桶&#xff0c;内存就是水&#xff0c;水 溢出 就是水满了。定义: 内存溢出是指程序试图使用超过其可用内存限制的内存。这种情况通常会导致程序崩溃或异常。内存溢出一般是由于分配了过多…

Mixture of Experts with Attention论文解读

注意这篇论文没有代码&#xff0c;文章所谓的注意力是加性注意力&#xff0c;找scaled dot-product的伙计可以避坑了&#xff0c;但还是有值得学习的地方。 score是啥&#xff1f; 这个score标量怎么计算得到&#xff0c;请假设一下x和z的值&#xff0c;计算演示一下 expert是…

第十二章(重点 元数据管理)

语境关系图&#xff1a; 1. 元数据概念&#xff1a; 元数据从技术的角度叫元数据 从业务的角度叫数据资源管理目录 技术 元数据 业务 数据资源管理目录 但是并不是数据资产目录 如果没有可靠的原数据&#xff0c;组织就不知道它拥有什么数据&#xff0c;数据表示什么&#xff…

运行ruoyi

创建数据库 根据ry_20240629.sql创建ry-cloud数据库 根据ry_config_20231204.sql创建ry-config数据库 nacos 数据库配置 修改nacos/conf/application.properties 单机版运行 startup.cmd -m standalone redis 运行后端 运行gateway,auth,modules/system模块 可能遇到的问…

怎么给电脑选一款合适的固态硬盘?就看这个参数!

前言 前段时间有很多小伙伴找小白修电脑&#xff0c;在修电脑的过程中&#xff0c;小白也会稍微看一下硬件配置。 小白就发现一个事情&#xff1a;很多小伙伴其实都不太懂电脑硬件。 为啥这么说呢&#xff1f;简单来说就是主板上使用了“不合适”的固态硬盘作为主系统硬盘。…

VulnHub-Tomato靶机渗透教程 简单易懂 报错链接

Tomato靶机是一个用于渗透测试和漏洞研究的虚拟机。 环境准备 攻击机&#xff08;Kali Linux&#xff09;IP&#xff1a;192.168.252.134 目标机 IP&#xff1a;192.168.252.133 这里我两台虚拟机都是NAT模式 渗透步骤 1.端口扫描 这里我没用kali自带的 我用的物理机上…

【Python学习手册(第四版)】学习笔记12.1-语法规则拓展

个人总结难免疏漏&#xff0c;请多包涵。更多内容请查看原文。本文以及学习笔记系列仅用于个人学习、研究交流。 本文是对【学习笔记10】-语句编写的通用规则 介绍过的语法概念进行复习并扩展。非常简单&#xff0c;应该是我写过的最简单的文章&#xff0c;阅读时间&#xff1a…

学习Mybatis及其简单配置

目录 JDBC的弊端 为什么要有ORM模型&#xff1f; 什么是ORM模型&#xff1f; Mybatis和hibernate 区别: Mybatis解决了jdbc的问题 为什么选择myBatis&#xff08;优势&#xff09;&#xff1f; 什么是MyBatis 主配置文件&#xff08;config文件&#xff09; Mapper文件…

TwinCAT3 C++环境安装教程

文章目录 下载windos插件:下载地址&#xff0c;安装这个插件是为了能在 TwinACT 3 工程环境创建和编辑 C模块。 点击下载的文件&#xff0c;打开其中的KitSetup.exe 在打开的窗口中选择"Build Environment"后点击OK 弹出的窗口点击ok 选择“I agree”后点击…

从零逐步实现SVM(含公式推导)上

支持向量机&#xff08;SVM&#xff09;相关概念 支持向量&#xff1a;支持或支撑平面上把两类类别划分开的超平面的向量点线性可分支持向量机&#xff1a;通过硬间隔最大化&#xff0c;学习一个线性分类器线性支持向量机&#xff1a;通过软间隔最大&#xff0c;学习一个线性分…

掌握时间的秘密:pytz 库的神奇之旅

文章目录 掌握时间的秘密&#xff1a;pytz 库的神奇之旅背景&#xff1a;为何选择 pytz&#xff1f;pytz 库是什么&#xff1f;如何安装 pytz&#xff1f;函数的使用方法场景应用常见问题与解决方案总结 掌握时间的秘密&#xff1a;pytz 库的神奇之旅 背景&#xff1a;为何选择…

【Vue3】默认插槽

【Vue3】默认插槽 背景简介开发环境开发步骤及源码 背景 随着年龄的增长&#xff0c;很多曾经烂熟于心的技术原理已被岁月摩擦得愈发模糊起来&#xff0c;技术出身的人总是很难放下一些执念&#xff0c;遂将这些知识整理成文&#xff0c;以纪念曾经努力学习奋斗的日子。本文内…

学习c语言第18天(字符串和内存函数)

1.函数介绍 1.1 strlen size_t(就是无符号整形) strlen(const char * str); 字符串已经\0作为结束标志&#xff0c;strlen函数返回的是在字符串中\0前面出现的字符个数(不包 含\0) 参数指向的字符串必须要以\0结束。 注意函数的返回值为size_t&#xff0c;…

Java并发—Java内存模型以及线程安全

目录 一、Java内存模型 JMM的核心概念 二、什么是线程安全&#xff1f; 1、原子性 2、有序性 3、可见性 三、如何确保线程安全&#xff1f; 1、sychronized关键字 2、Lock接口和其实现 3、volatile关键字 4、Atomic原子类 5、ThreadLocal 6、不可变对象 7、并发集…

电商数据采集封装API的详细步骤分享(API测试实例)

在当今的电商行业中&#xff0c;数据采集已成为企业获取市场洞察、优化运营策略、提升用户体验的重要手段。而封装电商数据采集的API接口&#xff0c;则是将这一复杂过程标准化、模块化的有效方式。本文将详细分享电商数据采集封装API的步骤&#xff0c;并通过一个实际的API测试…

努力努力努力的第十四天(2024.7.31)

昨天日期写错了写成2020.7.30,应该是2024.7.31&#xff08;手滑了哈哈哈&#xff09; 1.行列转换 效果演示&#xff1a; 这是未经行列转换操作的t_score表&#xff1a; 这是经过行列转换后的t_score表&#xff1a; 第一步&#xff1a;确定初步的做法 使用分组查询(group by…