学习编程就得循环渐进,扎实基础,勿在浮沙筑高台
循环渐进Forward-CSDN博客
Hello,这里是kiki,今天继续更新C++部分,我们继续来扩充我们的知识面,我希望能努力把抽象繁多的知识讲的生动又通俗易懂,今天要讲的是C++AVL树~
目录
循环渐进Forward-CSDN博客
AVL树的概念
AVL树节点的定义
AVL树的插入
AVL树的旋转
AVL树的验证
AVL树的删除(了解)
AVL树的性能
AVL树的概念
二叉搜索树虽可以缩短查找的效率,但 如果数据有序或接近有序二叉搜索树将退化为单支树,查 找元素相当于在顺序表中搜索元素,效率低下。因此,两位俄罗斯的数学家G.M.Adelson-Velskii 和E.M.Landis在1962年 发明了一种解决上述问题的方法: 当向二叉搜索树中插入新结点后,如果能保证每个结点的左右 子树高度之差的绝对值不超过 1( 需要对树中的结点进行调整 ),即可降低树的高度,从而减少平均搜索长度。
一棵AVL树或者是空树,或者是具有以下性质的二叉搜索树:
它的左右子树都是 AVL 树左右子树高度之差 ( 简称平衡因子 ) 的绝对值不超过 1(-1/0/1)
如果一棵二叉搜索树是高度平衡的,它就是
AVL
树。如果它有
n
个结点,其高度可保持在
,搜索时间复杂度
AVL树节点的定义
template<class T>
struct AVLTreeNode
{
AVLTreeNode(const T& data)
: _pLeft(nullptr), _pRight(nullptr), _pParent(nullptr)
, _data(data), _bf(0)
{}
AVLTreeNode<T>* _pLeft; // 该节点的左孩子
AVLTreeNode<T>* _pRight; // 该节点的右孩子
AVLTreeNode<T>* _pParent; // 该节点的双亲
T _data;
int _bf; // 该节点的平衡因子
};
AVL树的插入
AVL树就是在二叉搜索树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么
AVL树的插入过程可以分为两步:
1. 按照二叉搜索树的方式插入新节点2. 调整节点的平衡因子
bool Insert(const T& data)
{
while (pParent)
{
// 更新双亲的平衡因子
if (pCur == pParent->_pLeft)
pParent->_bf--;
else
pParent->_bf++;
// 更新后检测双亲的平衡因子
if (0 == pParent->_bf)
{
break;
}
else if (1 == pParent->_bf || -1 == pParent->_bf)
{
// 插入前双亲的平衡因子是0,插入后双亲的平衡因为为1 或者 -1 ,说明以双亲
为根的二叉树
// 的高度增加了一层,因此需要继续向上调整
pCur = pParent;
pParent = pCur->_pParent;
}
else
{
if(2 == pParent->_bf)
{
// ...
}
else
{
// ...
}
}
}
return true;
}
AVL树的旋转
如果在一棵原本是平衡的AVL树中插入一个新节点,可能造成不平衡,此时必须调整树的结构,
使之平衡化。根据节点插入位置的不同,AVL树的旋转分为四种:
1.
新节点插入较高左子树的左侧
---
左左:右单旋
2.
新节点插入较高右子树的右侧
---
右右:左单旋
3.
新节点插入较高左子树的右侧
---左右:先左单旋再右单旋
将双旋变成单旋后再旋转,即:
先对
30
进行左单旋,然后再对
90
进行右单旋,旋转完成后再
考虑平衡因子的更新。
// 旋转之前,60的平衡因子可能是-1/0/1,旋转完成之后,根据情况对其他节点的平衡因子进
行调整
void _RotateLR(PNode pParent)
{
PNode pSubL = pParent->_pLeft;
PNode pSubLR = pSubL->_pRight;
// 旋转之前,保存pSubLR的平衡因子,旋转完成之后,需要根据该平衡因子来调整其他节
点的平衡因子
int bf = pSubLR->_bf;
// 先对30进行左单旋
_RotateL(pParent->_pLeft);
// 再对90进行右单旋
_RotateR(pParent);
if(1 == bf)
pSubL->_bf = -1;
else if(-1 == bf)
pParent->_bf = 1;
}
4.
新节点插入较高右子树的左侧
---
右左:先右单旋再左单旋
参考右左双旋。
总结:
假如以pParent为根的子树不平衡,即pParent的平衡因子为2或者-2,分以下情况考虑1. pParent的平衡因子为2,说明pParent的右子树高,设pParent的右子树的根为pSubR1、当pSubR的平衡因子为1时,执行左单旋2、当pSubR的平衡因子为-1时,执行右左双旋2. pParent的平衡因子为-2,说明pParent的左子树高,设pParent的左子树的根为pSubL1、当pSubL的平衡因子为-1是,执行右单旋2、当pSubL的平衡因子为1时,执行左右双旋旋转完成后,原pParent为根的子树个高度降低,已经平衡,不需要再向上更新。
AVL树的验证
AVL树是在二叉搜索树的基础上加入了平衡性的限制,因此要验证AVL树,可以分两步:
1. 验证其为二叉搜索树1、如果中序遍历可得到一个有序的序列,就说明为二叉搜索树2. 验证其为平衡树1、每个节点子树高度差的绝对值不超过1(注意节点中如果没有平衡因子)2、节点的平衡因子是否计算正确
int _Height(PNode pRoot);
bool _IsBalanceTree(PNode pRoot)
{
// 空树也是AVL树
if (nullptr == pRoot) return true;
// 计算pRoot节点的平衡因子:即pRoot左右子树的高度差
int leftHeight = _Height(pRoot->_pLeft);
int rightHeight = _Height(pRoot->_pRight);
int diff = rightHeight - leftHeight;
// 如果计算出的平衡因子与pRoot的平衡因子不相等,或者
// pRoot平衡因子的绝对值超过1,则一定不是AVL树
if (diff != pRoot->_bf || (diff > 1 || diff < -1))
return false;
// pRoot的左和右如果都是AVL树,则该树一定是AVL树
return _IsBalanceTree(pRoot->_pLeft) && _IsBalanceTree(pRoot-
>_pRight);
}
AVL树的删除(了解)
因为AVL树也是二叉搜索树,可按照二叉搜索树的方式将节点删除,然后再更新平衡因子,只不错与删除不同的时,删除节点后的平衡因子更新,最差情况下一直要调整到根节点的位置。
AVL树的性能
AVL树是一棵绝对平衡的二叉搜索树,其要求每个节点的左右子树高度差的绝对值都不超过1,这样可以保证查询时高效的时间复杂度,即$log_2 (N)$。但是如果要对AVL树做一些结构修改的操作,性能非常低下,比如:插入时要维护其绝对平衡,旋转的次数比较多,更差的是在删除时,有可能一直要让旋转持续到根的位置。因此:如果需要一种查询高效且有序的数据结构,而且数据的个数为静态的(即不会改变),可以考虑AVL树,但一个结构经常修改,就不太适合。
学习编程就得循环渐进,扎实基础,勿在浮沙筑高台