力扣刷题----42. 接雨水

news2024/11/17 20:34:00

给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。

输入:height = [0,1,0,2,1,0,1,3,2,1,2,1]
输出:6
解释:上面是由数组 [0,1,0,2,1,0,1,3,2,1,2,1] 表示的高度图,在这种情况下,可以接 6 个单位的雨水(蓝色部分表示雨水)。 
输入:height = [4,2,0,3,2,5]
输出:9

自己写的

 public class Solution

 {

     public int Trap(int[] height)

     {

         int[] Theleft=new int[height.Length];

         int[] Therightside=new int[height.Length];

         int[] res=new int[height.Length];

         int result = 0;

         int left=Theleft[0];

         int right = Therightside[Therightside.Length - 1];

         for (int i = 0; i < height.Length; i++)

         {

             if (left <= height[i])

             {

                 Theleft[i] = 0;

                 left = height[i];

             }

             else

             {

                 Theleft[i] = left - height[i] ;

                 

             }

         }

         for (int i = height.Length-1; i >= 0; i--)

         {

             if (right <= height[i])

             {

                 Therightside[i] = 0;

                 right = height[i];

             }

             else

             {

                 Therightside[i] = right - height[i];

                 

             }

         }

         for (int i = 0; i < height.Length; i++)

         {

             res[i]= Math.Min(Theleft[i], Therightside[i]);

         }

         for (int i = 0; i < res.Length; i++)

         {

             result=result + res[i];

         }

         return result;

     }

 }

空间复杂度比较高 和官方的第一个题解一样

方法一:动态规划
对于下标 i,下雨后水能到达的最大高度等于下标 i 两边的最大高度的最小值,下标 i 处能接的雨水量等于下标 i 处的水能到达的最大高度减去 height[i]。

朴素的做法是对于数组 height 中的每个元素,分别向左和向右扫描并记录左边和右边的最大高度,然后计算每个下标位置能接的雨水量。假设数组 height 的长度为 n,该做法需要对每个下标位置使用 O(n) 的时间向两边扫描并得到最大高度,因此总时间复杂度是 O(n 
2
 )。

上述做法的时间复杂度较高是因为需要对每个下标位置都向两边扫描。如果已经知道每个位置两边的最大高度,则可以在 O(n) 的时间内得到能接的雨水总量。使用动态规划的方法,可以在 O(n) 的时间内预处理得到每个位置两边的最大高度。

创建两个长度为 n 的数组 leftMax 和 rightMax。对于 0≤i<n,leftMax[i] 表示下标 i 及其左边的位置中,height 的最大高度,rightMax[i] 表示下标 i 及其右边的位置中,height 的最大高度。

显然,leftMax[0]=height[0],rightMax[n−1]=height[n−1]。两个数组的其余元素的计算如下:

当 1≤i≤n−1 时,leftMax[i]=max(leftMax[i−1],height[i]);

当 0≤i≤n−2 时,rightMax[i]=max(rightMax[i+1],height[i])。

因此可以正向遍历数组 height 得到数组 leftMax 的每个元素值,反向遍历数组 height 得到数组 rightMax 的每个元素值。

在得到数组 leftMax 和 rightMax 的每个元素值之后,对于 0≤i<n,下标 i 处能接的雨水量等于 min(leftMax[i],rightMax[i])−height[i]。遍历每个下标位置即可得到能接的雨水总量。

 但是官方的双指针更优化

方法三:双指针
动态规划的做法中,需要维护两个数组 leftMax 和 rightMax,因此空间复杂度是 O(n)。是否可以将空间复杂度降到 O(1)?

注意到下标 i 处能接的雨水量由 leftMax[i] 和 rightMax[i] 中的最小值决定。由于数组 leftMax 是从左往右计算,数组 rightMax 是从右往左计算,因此可以使用双指针和两个变量代替两个数组。

维护两个指针 left 和 right,以及两个变量 leftMax 和 rightMax,初始时 left=0,right=n−1,leftMax=0,rightMax=0。指针 left 只会向右移动,指针 right 只会向左移动,在移动指针的过程中维护两个变量 leftMax 和 rightMax 的值。

当两个指针没有相遇时,进行如下操作:

使用 height[left] 和 height[right] 的值更新 leftMax 和 rightMax 的值;

如果 height[left]<height[right],则必有 leftMax<rightMax,下标 left 处能接的雨水量等于 leftMax−height[left],将下标 left 处能接的雨水量加到能接的雨水总量,然后将 left 加 1(即向右移动一位);

如果 height[left]≥height[right],则必有 leftMax≥rightMax,下标 right 处能接的雨水量等于 rightMax−height[right],将下标 right 处能接的雨水量加到能接的雨水总量,然后将 right 减 1(即向左移动一位)。

当两个指针相遇时,即可得到能接的雨水总量。

下面用一个例子 height=[0,1,0,2,1,0,1,3,2,1,2,1] 来帮助读者理解双指针的做法。

 

class Solution {
    public int trap(int[] height) {
        int ans = 0;
        int left = 0, right = height.length - 1;
        int leftMax = 0, rightMax = 0;
        while (left < right) {
            leftMax = Math.max(leftMax, height[left]);
            rightMax = Math.max(rightMax, height[right]);
            if (height[left] < height[right]) {
                ans += leftMax - height[left];
                ++left;
            } else {
                ans += rightMax - height[right];
                --right;
            }
        }
        return ans;
    }
}

关于动态规划的介绍

动态规划(Dynamic Programming,简称DP)是一种在数学、管理科学、计算机科学、经济学和生物信息学等领域中使用的,通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。

动态规划经常用于求解具有重叠子问题和最优子结构性质的问题。这里的“重叠子问题”是指在递归算法中反复出现的问题,而“最优子结构”是指问题的最优解包含其子问题的最优解。

动态规划的关键步骤:

  1. 识别子问题:将问题分解为小的子问题,这些子问题往往是原问题的规模较小的版本。

  2. 确定状态:定义问题的解状态,通常用变量表示,例如 dp[i]

  3. 确定状态转移方程:找出状态之间的关系,即当前状态是如何由之前的一个或多个状态推导出来的。

  4. 确定初始状态和边界条件:确定状态转移的起点,即基本情况或边界条件。

  5. 确定求解策略:是自底向上(从最小的子问题开始解决)还是自顶向下(递归地解决)。

  6. 构造最优解:根据子问题的解构造原问题的解。

动态规划的常见应用:

  • 斐波那契数列:计算第n个斐波那契数。
  • 背包问题:在不超过背包容量的前提下,选择物品以最大化价值。
  • 最长公共子序列:找出两个序列的最长公共子序列。
  • 最短路径问题:如贝尔曼-福特算法解决带负权边的最短路径问题。
  • 矩阵链乘问题:计算矩阵乘法的最少操作次数。
  • 编辑距离问题:计算两个字符串之间的最小编辑距离。

示例:斐波那契数列的动态规划解法

斐波那契数列是一个典型的动态规划问题,其递归解法存在大量重复计算。动态规划解法如下:

  1. 状态定义dp[i] 表示斐波那契数列的第 i 个数。
  2. 状态转移方程dp[i] = dp[i-1] + dp[i-2]
  3. 初始状态dp[0] = 0dp[1] = 1
  4. 循环计算:从 2 到 n,依次计算 dp[i]
using System;

class Program
{
    // 动态规划计算斐波那契数列的第n项
    static long Fibonacci(int n)
    {
        if (n <= 1)
            return n;

        long[] dp = new long[n + 1];
        dp[0] = 0;
        dp[1] = 1;

        for (int i = 2; i <= n; i++)
        {
            dp[i] = dp[i - 1] + dp[i - 2];
        }

        return dp[n];
    }

    static void Main()
    {
        int n = 10; // 计算斐波那契数列的第10项
        long result = Fibonacci(n);
        Console.WriteLine($"Fibonacci of {n} is {result}");
    }
}

动态规划是一种非常强大的方法,可以显著提高算法的效率,特别是在解决具有重复子问题和最优子结构的问题时。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1955780.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

经验分享:大数据信用报告可以查到什么?哪里能查大数据?

相信不少人都因为大数据信用不良碰过壁&#xff0c;这时候不少人反过来想要了解大数据信用报告可以查到什么?哪里能查大数据?其实大数据信用报告就是通过对个人在互联网上产生的各类行为数据收集、整合和分析&#xff0c;并基于此对个人信用状况进行评估和预测的一种检测工具…

Java之快速排序

快速排序 快速排序(Quick Sort)算法&#xff0c;简称快排&#xff0c;利用的是分治的思想。 快速排序思路&#xff1a; ​ 如果要对 first->end 之间的数列进行排序&#xff0c;我们选择 first->end 之间的任意一个元素数据作为分区点(轴值Pivot)&#xff0c;然后遍历 f…

【Qt】QLabel常用属性相关API

QLabel是Qt框架中用于显示文本或图案的小部件。在Qt应用程序中&#xff0c;QLabel是用来呈现静态文本或图像给用户的重要部分 QLabel属性陈列 属性说明textQLabel中的文本内容textFormat 文本的格式 Qt::PlainText 纯文本Qt::RichText 富文本Qt::MarkdownText markdown…

Transformer--输入部分

&#x1f3f7;️上文我们简单介绍了Transformer模型的总体架构&#xff0c;本章我们主要介绍其输入部分 &#x1f4d6;前言 &#x1f4d6;文本嵌入层的作用 &#x1f4d6;位置编码器的作用 &#x1f4d6;前言 输入部分主要包括源文本嵌入层以及位置编码器&#xff0c;目标文本…

【Vulnhub系列】Vulnhub_SecureCode1靶场渗透(原创)

【Vulnhub系列靶场】Vulnhub_SecureCode1靶场渗透 原文转载已经过授权 原文链接&#xff1a;Lusen的小窝 - 学无止尽&#xff0c;不进则退 (lusensec.github.io) 一、环境配置 1、从百度网盘下载对应靶机的.ova镜像 2、在VM中选择【打开】该.ova 3、选择存储路径&#xff0…

高效管理基础设施:掌握 Terraform 的 templatefile 函数技巧

由于Terraform的许可证变更&#xff0c;我曾经担心未来的动向&#xff0c;但IBM宣布收购HashiCorp后&#xff0c;我感到有所安心。我将继续关注相关动向。 本文将介绍Terraform的内置函数templatefile。 什么是templatefile函数&#xff1f; templatefile函数用于读取指定路…

Ip2region - 基于xdb离线库的Java IP查询工具提供给脚本调用

文章目录 Pre效果实现git clone编译测试程序将ip2region.xdb放到指定目录使用改进最终效果 Pre OpenSource - Ip2region 离线IP地址定位库和IP定位数据管理框架 Ip2region - xdb java 查询客户端实现 效果 最终效果 实现 git clone git clone https://github.com/lionsou…

用SQL将数值转换为进度条

hi&#xff0c;大家好呀&#xff01; 最近天气是真的热&#xff0c;上周我们在某音做了一次直播&#xff0c;主要是讲解一下表&#xff0c;那我们最近的会在视频号&#xff0c;也就是微信上给大家直播讲解一下查询&#xff0c;直播预告晚点会分享给大家&#xff0c;请大家关注…

队列queue介绍

队列是一种常见的数据结构&#xff0c;它遵循FIFO&#xff08;先进先出&#xff09;的原则&#xff0c;即最先进入队列的元素将最先被移除。队列在Java中有多种实现方式&#xff0c;其中包括&#xff1a; 1.ArrayDeque&#xff1a;这是一个基于数组的双端队列&#xff0c;可以在…

模拟实现短信登录功能 (session 和 Redis 两种代码实例) 带前端演示

目录 整体流程 发送验证码 短信验证码登录、注册 校验登录状态 基于 session 实现登录 实现发送短信验证码功能 1. 前端发送请求 2. 后端处理请求 3. 演示 实现登录功能 1. 前端发送请求 2. 后端处理请求 校验登录状态 1. 登录拦截器 2. 注册拦截器 3. 登录完整…

Boost_Searcher测试用例编写

功能描述&#xff1a; 用户在客户端页面&#xff0c;在搜索框输入关键词&#xff0c;页面将显示Boost库中所有包含该关键词的内容。 界面功能兼容性易用性安全性性能弱网安装/卸载 编写测试用例&#xff1a; 功能&#xff1a; 在浏览器搜索框中输入ip地址与端口号&#xff0…

MySQL的库操作和表操作

文章目录 MYSQLSQL语句分类服务器&#xff0c;数据库和表的关系 库操作表操作 MYSQL SQL语句分类 DDL【data definition language】 数据定义语言&#xff0c;用来维护存储数据的结构代表指令: create, drop, alterDML【data manipulation language】 数据操纵语言&#xff0…

Playwright 的使用

Playwright 的特点 支持当前所有主流浏览器&#xff0c;包括 Chrome 和 Edge &#xff08;基于 Chromiuns&#xff09;, Firefox , Safari 支持移动端页面测试&#xff0c;使用设备模拟技术&#xff0c;可以让我们在移动Web 浏览器中测试响应式的 Web 应用程序 支持所有浏览…

做一个能和你互动玩耍的智能机器人之四--固件

在openbot的firmware目录下我们能够找到arduino的固件源码和相关的文档。 openbot的controller目录下&#xff0c;是控制器的代码目录&#xff0c;用来控制机器人做一些动作。未来的目标是加入大模型&#xff0c;使其能够理解人的语言和动作来控制。 固件代码&#xff0c;支持…

数据结构 -- 算法的时间复杂度和空间复杂度

数据结构 -- 算法的时间复杂度和空间复杂度 1.算法效率1.1 如何衡量一个算法的好坏1.2 算法的复杂度 2.时间复杂度2.1 时间复杂度的概念2.2 大O的渐进表示法2.3常见时间复杂度计算举例 3.空间复杂度4. 常见复杂度对比 1.算法效率 1.1 如何衡量一个算法的好坏 如何衡量一个算法…

数据库实验:SQL Server基本表单表查询

一、实验目的&#xff1a; 1、掌握使用SQL语法实现单表查询 二、实验内容&#xff1a; 1. 查询订购日期为2001年5月22日的订单情况。&#xff08;Orders&#xff09;&#xff08;时间日期的表达方式为 dOrderDate ‘2001-5-22’&#xff0c;类似字符串&#xff0c;使用单引号…

Linux---git工具

目录 初步了解 基本原理 基本用法 安装git 拉取远端仓库 提交三板斧 1、添加到缓存区 2、提交到本地仓库 3、提交到远端 其他指令补充 多人协作管理 windows用户提交文件 Linux用户提交文件 初步了解 在Linux中&#xff0c;git是一个指令&#xff0c;可以帮助我们做…

Python爬虫-中国汽车市场月销量数据

前言 本文是该专栏的第34篇,后面会持续分享python爬虫干货知识,记得关注。 在本文中,笔者将通过某汽车平台,来采集“中国汽车市场”的月销量数据。 具体实现思路和详细逻辑,笔者将在正文结合完整代码进行详细介绍。废话不多说,下面跟着笔者直接往下看正文详细内容。(附…

【原创】使用keepalived虚拟IP(VIP)实现MySQL的高可用故障转移

1. 背景 A、B服务器均部署有MySQL数据库&#xff0c;且互为主主。此处为A、B服务器部署MySQL数据库实现高可用的部署&#xff0c;当其中一台MySQL宕机后&#xff0c;VIP可自动切换至另一台MySQL提供服务&#xff0c;实现故障的自动迁移&#xff0c;实现高可用的目的。具体流程…