netty入门-3 EventLoop和EventLoopGroup,简单的服务器实现

news2024/12/26 13:57:27

文章目录

  • EventLoop和EventLoopGroup
    • 服务器与客户端基本使用
    • 增加非NIO工人
    • NioEventLoop 处理普通任务与定时任务
  • 结语

EventLoop和EventLoopGroup

二者大概是什么这里不再赘述,前一篇已简述过。
不理解也没关系。
下面会简单使用,看了就能明白是什么
这篇文章只说NioEventLoopGroup
后续文章会有服务器创建类BootStrap的方法总结。

服务器与客户端基本使用

EventLoopGroup的常用实现类是NioEventLoopGroup
就以此为例,我们来看这两者,在使用netty创建一个服务器的过程中处于什么位置。

PS:我觉得既然是专注于这个东西怎么用,就不要太纠结于底层。
我当时看到childHandler,就想弄明白这个到底是怎么把Handler加到新ChannelPipeline中的。这就要涉及源码。下面这个链式调用其他部分也是一样。想搞明白每个调用的底层还是需要看源码。会给初学者带来没必要的精力耗费。我觉得需要收住好奇心,先会简单使用,再说底层实现。

//服务端
//ServerBootstrap相当于提供了创建服务器的辅助类。允许通过链式调用更优雅的启动一个服务器。
//我们通过一系列链式调用完成了服务器的创建。
new ServerBootstrap()
	//group相当于我们配置EventLoopGroup的地方,它将用于后续的事件处理
   .group(new NioEventLoopGroup(1), new NioEventLoopGroup(2))
   //channel指定通道类型,NioServerSocketChannel是netty的封装类,即NIO中的升级版
   .channel(NioServerSocketChannel.class)
   //这个名字child代表子通道,什么意思?即我们有一个NioServerSocketChannel来处理Accept请求。接受的每个连接都会创建自己的SocketChannel用于通信,可当作child,即子通道。
   //所以顾名思义子通道处理器。即为新创建的每一个子通道都会绑定这个ChannelInitializer,那么它又是做什么的?
   //ChannelInitializer会在每个新Channel被注册到EventLoopGroup时执行内部我们重写的initChannel方法,将我们在initChannel方法中自定义的处理器添加到我们这个channel的channelpipeline中。即为我们新连接的Channel添加一个handler。关于handler和pipeline,在上篇中简单讲述了是什么。
   //简单来说,它是对每个新建立的连接Channel,指定我们写好的处理逻辑,之后Channel的读写操作都会经过这些逻辑。
   .childHandler(new ChannelInitializer<NioSocketChannel>() {
       @Override
       protected void initChannel(NioSocketChannel ch) {//这里的参数我猜测就是我们新连接的channel
       //这里对新channel添加我们自定义的handler
           ch.pipeline().addLast(new ChannelInboundHandlerAdapter() {
               @Override
               public void channelRead(ChannelHandlerContext ctx, Object msg) {
                   ByteBuf byteBuf = msg instanceof ByteBuf ? ((ByteBuf) msg) : null;
                   if (byteBuf != null) {
                       byte[] buf = new byte[16];
                       ByteBuf len = byteBuf.readBytes(buf, 0, byteBuf.readableBytes());
                       log.debug(new String(buf));
                   }
               }
           });
       }
       //绑定端口,并sync阻塞住
   }).bind(8080).sync();

这里还有一些理解
channel()方法,将我们指定的NioServerSocketChannel 注册到group中的第一个group内的某个EventLoop,由该EventLoop监听。第一个group中的EventLoop被称为Boss,专门处理连接请求。
所有连接由NioServerSocketChannel处理,同时新连接产生的SocketChannel注册到第二个group内的某个EventLoop,由该EventLoop监听。这些EventLoop被称为Worker。处理读写请求。
上面程序中相当于有两个Worker,因为创建EventLoopGroup时参数为2。

所以小结一下。每个Channel都会由一个EventLoop监听。并且在事件发生时调用对应的处理器进行处理。即完成对事件的监听和处理。

//客户端
//通过链式调用,拿到连接完毕的Channel
Channel channel = new Bootstrap()
            .group(new NioEventLoopGroup(1))
            .handler(new ChannelInitializer<NioSocketChannel>() {
                @Override
                protected void initChannel(NioSocketChannel ch) throws Exception {
                    System.out.println("init...");
                    ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
                }
            })
            .channel(NioSocketChannel.class).connect("localhost", 8080)
            .sync()
            .channel();

// 发送消息
channel.writeAndFlush(ByteBufAllocator.DEFAULT.buffer().writeBytes("wangwu".getBytes()));
    Thread.sleep(2000);
    channel.writeAndFlush(ByteBufAllocator.DEFAULT.buffer().writeBytes("wangwu".getBytes()));

这里多创建几个客户端发消息,会发现服务器中的两个Worker会分别处理属于自己管理Channel的事件。

增加非NIO工人

下面程序有两个handler
LoggingHandler"myhandler"
引入了一个我们自己创建的DefaultEventLoopGroup 去处理"myhandler"的任务,即非NIO工人

//额外的工程组
//非NIO工人2个
DefaultEventLoopGroup normalWorkers = new DefaultEventLoopGroup(2);
new ServerBootstrap()
    .group(new NioEventLoopGroup(1), new NioEventLoopGroup(2))
    .channel(NioServerSocketChannel.class)
    .childHandler(new ChannelInitializer<NioSocketChannel>() {
        @Override
        protected void initChannel(NioSocketChannel ch)  {
            ch.pipeline().addLast(new LoggingHandler(LogLevel.DEBUG));
            ch.pipeline().addLast(normalWorkers,"myhandler",
              new ChannelInboundHandlerAdapter() {
                @Override
                public void channelRead(ChannelHandlerContext ctx, Object msg) {
                    ByteBuf byteBuf = msg instanceof ByteBuf ? ((ByteBuf) msg) : null;
                    if (byteBuf != null) {
                        byte[] buf = new byte[16];
                        ByteBuf len = byteBuf.readBytes(buf, 0, byteBuf.readableBytes());
                        log.debug(new String(buf));
                    }
                }
            });
        }
    }).bind(8080).sync();

看完这个代码,我们看添加handler时的参数,我们发现"myhandler"被交给了我们自己一开始创建的DefaultEventLoopGroup normalWorkers 来执行。
关系见下图
headtail看做pipelinehandler链的头尾,可视为无意义。
h1代表LoggingHandler
h2代表"myhandler"
在这里插入图片描述

那么这里老师巧妙的引出了pipeline处理过程中的handler的切换,因为两个handler分别是两个不同的EventLoop去执行,就需要一个执行完后交给另一个EventLoop去执行。然后引出了源码,比较容易让人接受,理解。

//handler换人源码
static void invokeChannelRead(final AbstractChannelHandlerContext next, Object msg) {
    final Object m = next.pipeline.touch(ObjectUtil.checkNotNull(msg, "msg"), next);
    // 下一个 handler 的事件循环是否与当前的事件循环是同一个线程
    EventExecutor executor = next.executor();
    
    // 是,直接调用
    if (executor.inEventLoop()) {
        next.invokeChannelRead(m);
    } 
    // 不是,将要执行的代码作为任务提交给下一个事件循环处理(换人)
    else {
        executor.execute(new Runnable() {
            @Override
            public void run() {
                next.invokeChannelRead(m);
            }
        });
    }
}
  • 如果两个 handler 绑定的是同一个线程(EventLoop),那么就直接调用
  • 否则,把要调用的代码封装为一个任务对象,由下一个 handler 的线程来调用

NioEventLoop 处理普通任务与定时任务

NioEventLoop还可以执行普通任务和定时任务

//普通任务
NioEventLoopGroup nioWorkers = new NioEventLoopGroup(2);
log.debug("server start...");
Thread.sleep(2000);
nioWorkers.execute(()->{
    log.debug("normal task...");
});

//定时任务
NioEventLoopGroup nioWorkers = new NioEventLoopGroup(2);
log.debug("server start...");
Thread.sleep(2000);
nioWorkers.scheduleAtFixedRate(() -> {
    log.debug("running...");
}, 0, 1, TimeUnit.SECONDS);

结语

仅仅说使用的话内容好像不多。
api使用的话还要之后自己进行网络程序的编写,学习过程中估计很难记住。还是要学完去实践才能熟练使用。
下篇应该是Netty的Future与Promise,或者Netty Channel相比于NIO的有什么不同(这块估计要看下书,课上没咋提)。

后续会有文章单独说明ServerBootstrap类的一些方法。

感谢阅读,欢迎批评指正。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1947684.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

加速决策过程:企业级爬虫平台的实时数据分析

摘要 在当今数据驱动的商业环境中&#xff0c;企业如何才能在海量信息中迅速做出精准决策&#xff1f;本文将探讨企业级爬虫平台如何通过实时数据分析加速决策过程&#xff0c;实现数据到决策的无缝衔接。我们聚焦于技术如何赋能企业&#xff0c;提升数据处理效率&#xff0c;…

深入分析 Android ContentProvider (三)

文章目录 深入分析 Android ContentProvider (三)ContentProvider 的高级使用和性能优化1. 高级使用场景1.1. 数据分页加载示例&#xff1a;分页加载 1.2. 使用 Loader 实现异步加载示例&#xff1a;使用 CursorLoader 加载数据 1.3. ContentProvider 与权限管理示例&#xff1…

On the Dimensionality of Word Embedding论文解读

基本信息 作者Zi Yindoi10.3115/v1/D14-1162发表时间2018期刊NIPS网址https://arxiv.org/abs/1812.04224 研究背景 1. What’s known 既往研究已证实 词嵌入的一元不变性。 多数的词嵌入算法本质上都是矩阵分解。 2. What’s new 创新点 提出了 Pairwise Inner Product&…

Prometheus配置alertmanager告警

1、拉取镜像并运行 1、配置docker镜像源 [rootlocalhost ~]# vim /etc/docker/daemon.json {"registry-mirrors": ["https://dfaad.mirror.aliyuncs.com"] } [rootlocalhost ~]# systemctl daemon-reload [rootlocalhost ~]# systemctl restart docker2、…

单片机主控的基本电路

论文 1.复位电路 2.启动模式设置接口 3.VBAT供电接口 4.MCU 基本电路 5.参考电压选择端口 6.SDRAM电路 7.LCD模块电路 8.USB电路 9.按键电路 10.LED电路 11.SD卡电路 12.电量检测电路 13.蓝牙接口通信电路 14.SPI FLASH 电路

Spark实时(四):Strctured Streaming简单应用

文章目录 Strctured Streaming简单应用 一、Output Modes输出模式 二、Streaming Table API 三、​​​​​​​​​​​​​​Triggers 1、​​​​​​​unspecified&#xff08;默认模式&#xff09; 2、​​​​​​​​​​​​​​Fixed interval micro-batches&am…

总结20个Python接单赚钱的平台,兼职月入6000+_让你早日实现财富自由

今天就给大家盘点几个基本入门接私活的资源&#xff0c;让你轻松学python&#xff0c;实现经济独立。 一、Python兼职种类&#xff1a; 接私活刚学会python那会&#xff0c;就有认识的朋友介绍做一个网站的私活&#xff0c;当时接单赚了4K&#xff0c;后又自己接过开发网站后…

vue3+element-plus 实现动态菜单和动态路由的渲染

在 Vue.js 中&#xff0c;使用 Vue Router 管理路由数据&#xff0c;并将其用于渲染 el-menu&#xff08;Element UI 的菜单组件&#xff09;通常涉及以下几个步骤&#xff1a; 定义路由元数据&#xff1a; 在你的路由配置中&#xff0c;为每个路由项添加 meta 字段&#xff0c…

SQL labs-SQL注入(五,使用sqlmap进行cookie注入)

本文仅作为学习参考使用&#xff0c;本文作者对任何使用本文进行渗透攻击破坏不负任何责任。 引言&#xff1a; Cookie 是一些数据, 存储于你电脑上的文本文件中。当 web 服务器向浏览器发送 web 页面时&#xff0c;在连接关闭后&#xff0c;服务端不会记录用户的信息。Cookie…

新形势下职业教育大数据人才培养策略

一、引言 随着信息技术的飞速发展&#xff0c;大数据已成为驱动经济社会变革的关键力量。在新形势下&#xff0c;职业教育作为技术技能人才培养的重要阵地&#xff0c;面临着如何适应大数据时代要求、提升人才培养质量的紧迫任务。当前&#xff0c;职业教育在大数据人才培养方…

【C语言】指针大小知多少 ?一场探寻C语言深处的冒险 !

目录 C语言中指针的大小1. 指针大小的基本概念1.1 32位系统1.2 64位系统 2. 指针大小示例2.1 32位系统输出2.2 64位系统输出 3. 指针大小与数据类型无关示例输出示例 4. 跨平台的指针大小示例输出示例 5. 关键点总结5.1 指针大小与平台关系5.2 跨平台编程注意事项 6. 指针大小示…

PySide(PyQt)的小部件通过伪状态以及自定义特性改变外观

1、通过伪状态来改变外观 伪状态是一种特殊的状态&#xff0c;通常用于描述控件在特定条件下的外观变化。这些状态不是控件的实际属性&#xff0c;而是用于在样式表中应用不同样式的标记。 以QPushButton为例。在 PySide6 中&#xff0c;QPushButton 具有多种伪状态&#xff0c…

卷积神经网络(二)-AlexNet

前言&#xff1a; AlexNet是2012年ImageNet竞赛冠军&#xff08;以领先第二名10%的准确率夺得冠军&#xff09;获得者Hinton和他的学生Alex Krizhevsky设计的,在ILSVRC-2010测试集上取得了top-1错误率37.5%,top-5错误率17.0%&#xff08;优于第二名的16.4%&#xff09;,明显优…

科技快讯丨智驱未来,校企共融:浪潮海岳携手山东大学软件学院开展低代码开发实训活动

近日&#xff0c;山东大学软件学院暑期实训活动圆满落幕。作为领先的企业数字化转型优秀服务商&#xff0c;浪潮海岳主导的低代码开发课题吸引了众多师生参训&#xff0c;取得了良好成效。 当前&#xff0c;低代码开发已成为软件行业降本增效、提升用户体验的必然选择&#xff…

labview实现两台电脑共享变量传输及同步

因为工作需要&#xff0c;需要实现多台主机间进行数据传输&#xff0c; 有两个备选方案&#xff0c; 1&#xff1a;建立tcp&#xff0c;然后自己解包 2&#xff1a;就是通过共享变量传输 虽然共享变量也是建立在TCP/IP上面的&#xff0c;但是不用自己解包呀 关于共享变量网络上…

vivo手机恢复出厂设置在哪里?清除数据后如何找回?2个技巧

随着使用时间的增长&#xff0c;手机可能会因为累积的缓存文件、不必要的数据或软件问题而出现性能下降或系统运行缓慢。为了解决这些问题&#xff0c;执行恢复出厂设置成为了一种流行的解决方案。那么&#xff0c;vivo手机恢复出厂设置在哪里&#xff1f;数据清除后该如何找回…

CCRC-DSO数据安全官:打造数据“冷链”,做强做大数据产业

在7月22日国新办举办的“推动高质量发展”系列新闻发布会上&#xff0c;国家数据局局长刘烈宏宣布&#xff0c;为响应党的二十届三中全会的决策&#xff0c;将加速推进数字经济发展机制的构建和完善数据要素市场制度。 他强调了对地方试点探索的支持&#xff0c;目标是建立强大…

基础复习(数组)

数组 一维数组 1.静态初始化 数据类型[] 数组名 new 数据类型[]{元素1,元素2,元素3,...}; 数据类型[] 数组名 {元素1,元素2,元素3...}; 2.动态初始化 数组存储的元素的数据类型[] 数组名字 new 数组存储的元素的数据类型[长度]; 3.执行原理 变量存储的是数组的地址值。…

Pyqt5新手教程

PyQt界面开发的两种方式&#xff1a;可视化UI 编程式UI &#xff08;1&#xff09;可视化UI&#xff1a;基于Qt Designer可视化编辑工具进行组件拖放、属性设置、布局管理等操作创建界面。 一是将其保存为.ui文件&#xff0c;然后在PyQt应用程序中加载和使用.ui文件。 二是使用…

接口自动化测试框架实战-3-文件读写封装

上一小节我们详细介绍了项目中所使用的接口文档&#xff0c;本小节我们将进入到接口测试框架第一个部分通用函数commons的开发&#xff0c;本小节我们重点完成文件读写方法的封装。 首先为什么要封装文件读写的方法&#xff0c;原因有如下几点&#xff1a; 读接口配置&#x…