llamaindex+Internlm2 RAG实践

news2025/1/3 0:58:09

llamaindex+Internlm2 RAG实践

环境、模型准备

进入开发机后,从官方环境复制运行 InternLM 的基础环境,命名为 llamaindex,在命令行模式下运行:

conda create -n llamaindex python=3.10

运行 conda 命令,激活 llamaindex 然后安装相关基础依赖 python 虚拟环境:

conda activate llamaindex
conda install pytorch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2 pytorch-cuda=11.7 -c pytorch -c nvidia

安装 Llamaindex

安装 Llamaindex和相关的包

conda activate llamaindex
pip install llama-index==0.10.38 llama-index-llms-huggingface==0.2.0 "transformers[torch]==4.41.1" "huggingface_hub[inference]==0.23.1" huggingface_hub==0.23.1 sentence-transformers==2.7.0 sentencepiece==0.2.0  protobuf     einops

下载 Sentence Transformer 模型
源词向量模型 Sentence Transformer:(我们也可以选用别的开源词向量模型来进行 Embedding,目前选用这个模型是相对轻量、支持中文且效果较好的,同学们可以自由尝试别的开源词向量模型) 运行以下指令,新建一个python文件,贴入一下代码。

import os
from modelscope.hub.snapshot_download import snapshot_download
# 创建保存模型目录
os.system("mkdir /root/models")
# save_dir是模型保存到本地的目录
save_dir="/root/model"
path="Ceceliachenen/paraphrase-multilingual-MiniLM-L12-v2"
snapshot_download(path, 
                  cache_dir=save_dir)

运行代码即可下载到root下边的models文件夹下边。

下载 NLTK 相关资源

使用以下命令:

cd /root
git clone https://gitee.com/yzy0612/nltk_data.git  --branch gh-pages
cd nltk_data
mv packages/*  ./
cd tokenizers
unzip punkt.zip
cd ../taggers
unzip averaged_perceptron_tagger.zip

LlamaIndex HuggingFaceLLM

运行以下指令,把 InternLM2 1.8B 软连接出来

cd ~/model
ln -s /root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b/ ./

运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch llamaindex_internlm.py

打开llamaindex_internlm.py 贴入以下代码

from llama_index.llms.huggingface import HuggingFaceLLM
from llama_index.core.llms import ChatMessage
llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)

rsp = llm.chat(messages=[ChatMessage(content="xtuner是什么?")])
print(rsp)

之后运行

conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_internlm.py

在这里插入图片描述

LlamaIndex RAG

安装 LlamaIndex 词嵌入向量依赖

conda activate llamaindex
pip install llama-index-embeddings-huggingface llama-index-embeddings-instructor

运行以下命令,获取知识库

cd ~/llamaindex_demo
mkdir data
cd data
git clone https://github.com/InternLM/xtuner.git
mv xtuner/README_zh-CN.md ./

运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch llamaindex_RAG.py

打开llamaindex_RAG.py贴入以下代码

from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings

from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

embed_model = HuggingFaceEmbedding(
    model_name="/root/model/Ceceliachenen/paraphrase-multilingual-MiniLM-L12-v2"
)

Settings.embed_model = embed_model

llm = HuggingFaceLLM(
    model_name="/root/model/internlm2-chat-1_8b",
    tokenizer_name="/root/model/internlm2-chat-1_8b",
    model_kwargs={"trust_remote_code":True},
    tokenizer_kwargs={"trust_remote_code":True}
)
Settings.llm = llm

documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
index = VectorStoreIndex.from_documents(documents)
query_engine = index.as_query_engine()
response = query_engine.query("xtuner是什么?")

print(response)

之后运行

conda activate llamaindex
cd ~/llamaindex_demo/
python llamaindex_RAG.py

结果为:
在这里插入图片描述

LlamaIndex web

运行之前首先安装依赖

pip install streamlit==1.36.0

运行以下指令,新建一个python文件

cd ~/llamaindex_demo
touch app.py

打开app.py贴入以下代码

import streamlit as st
from llama_index.core import VectorStoreIndex, SimpleDirectoryReader, Settings
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
from llama_index.llms.huggingface import HuggingFaceLLM

st.set_page_config(page_title="llama_index_demo", page_icon="🦜🔗")
st.title("llama_index_demo")

# 初始化模型
@st.cache_resource
def init_models():
    embed_model = HuggingFaceEmbedding(
        model_name="/root/model/Ceceliachenen/paraphrase-multilingual-MiniLM-L12-v2"
    )
    Settings.embed_model = embed_model

    llm = HuggingFaceLLM(
        model_name="/root/model/internlm2-chat-1_8b",
        tokenizer_name="/root/model/internlm2-chat-1_8b",
        model_kwargs={"trust_remote_code": True},
        tokenizer_kwargs={"trust_remote_code": True}
    )
    Settings.llm = llm

    documents = SimpleDirectoryReader("/root/llamaindex_demo/data").load_data()
    index = VectorStoreIndex.from_documents(documents)
    query_engine = index.as_query_engine()

    return query_engine

# 检查是否需要初始化模型
if 'query_engine' not in st.session_state:
    st.session_state['query_engine'] = init_models()

def greet2(question):
    response = st.session_state['query_engine'].query(question)
    return response

      
# Store LLM generated responses
if "messages" not in st.session_state.keys():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]    

    # Display or clear chat messages
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.write(message["content"])

def clear_chat_history():
    st.session_state.messages = [{"role": "assistant", "content": "你好,我是你的助手,有什么我可以帮助你的吗?"}]

st.sidebar.button('Clear Chat History', on_click=clear_chat_history)

# Function for generating LLaMA2 response
def generate_llama_index_response(prompt_input):
    return greet2(prompt_input)

# User-provided prompt
if prompt := st.chat_input():
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.write(prompt)

# Gegenerate_llama_index_response last message is not from assistant
if st.session_state.messages[-1]["role"] != "assistant":
    with st.chat_message("assistant"):
        with st.spinner("Thinking..."):
            response = generate_llama_index_response(prompt)
            placeholder = st.empty()
            placeholder.markdown(response)
    message = {"role": "assistant", "content": response}
    st.session_state.messages.append(message)

之后运行

streamlit run app.py

结果为:
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1947496.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

IP地址专用SSL证书申请指南——六步完成

IP地址SSL证书是一种专门设计用于IP地址的SSL/TLS证书,部署IP地址SSL证书可以实现IP地址HTTPS加密。 一:前提条件 1;申请IP地址SSL证书,必须拥有这个IP地址的管理权限 2;非内网IP,以下是常见的内网IP字段 10.0.0.0…

Mindspore框架循环神经网络RNN模型实现情感分类|(三)RNN模型构建

Mindspore框架循环神经网络RNN模型实现情感分类 Mindspore框架循环神经网络RNN模型实现情感分类|(一)IMDB影评数据集准备 Mindspore框架循环神经网络RNN模型实现情感分类|(二)预训练词向量 Mindspore框架循环神经网络RNN模型实现…

松下UV电源MID SONIC600 ANUP8304NAIS电源设备更新换下的

松下UV电源MID SONIC600 ANUP8304NAIS电源设备更新换下的

JL 跳转指令的理解

一般情况下,JU 和 JC 是最常见的跳转指令;但有时会用到JL 指令,JL 说起来更像是一组指令,类似C,C# 语言中的 switch case 语句,但是有个明显的不同,前者的判断条件可以是任意合理数字,后者范围…

洗地机什么品牌质量好耐用?口碑最好的洗地机排名分享

在追求高效、便捷的现代家居环境中,洗地机作为清洁工具的关键角色,其品牌与品质的选择成为了消费者关注的焦点。面对琳琅满目的洗地机市场,洗地机什么品牌质量好耐用?如何挑选出一款既高效又智能,且能带来卓越清洁体验…

算力共享:环形结构的算力分配策略

目录 算力共享:环形结构的算力分配策略 方法签名 方法实现 注意事项 nodes.sort(key=lambda x: (x[1].memory, x[0]), reverse=True) end = round(start + (node[1].memory / total_memory), 5) 算力共享:环形结构的算力分配策略 这段代码定义了一个名为RingMemoryWeig…

基于 HTML+ECharts 实现智慧运维数据可视化大屏(含源码)

智慧运维数据可视化大屏:基于 HTML 和 ECharts 的实现 在现代企业中,运维管理是确保系统稳定运行的关键环节。随着数据量的激增,如何高效地监控和分析运维数据成为了一个重要课题。本文将介绍如何利用 HTML 和 ECharts 实现一个智慧运维数据可…

菜鸟从0学微服务——MyBatis-Plus

关于“菜鸟从0学微服务” 针对有编程基础,开始学习微服务的同学,我们陆续推出从0学微服务的笔记分享。力求从各个中间件的使用来反思这些中间件的作用和优势。 会分享的比较快,会记录demo演算和中间件的使用过程,至于细节的理论…

Python的人脸识别程序

1.录入人脸,输入ID号 haarcascade_frontalface_default.xml # 导入模块 import os import numpy as np import cv2 as cv import cv2face_detector cv2.CascadeClassifier(rD:\Automation_All_Files\OCR\haarcascade_frontalface_default.xml) # 待更改# 为即将…

【VTKExamples::Movie】制作并保存动画

很高兴在雪易的CSDN遇见你 VTK技术爱好者 QQ:870202403 公众号:VTK忠粉 前言 本文分享VTK中创建动画,并保存动画的方法,样例及样例源码,希望对各位小伙伴有所帮助! 感谢各位小伙伴的点赞+关注,小易会继续努力分享,一起进步! 你的点赞就是我的动力(^U^)ノ…

vue-快速入门

Vue 前端体系、前后端分离 1、概述 1.1、简介 Vue (发音为 /vjuː/,类似 view) 是一款用于构建用户界面的 JavaScript 框架。它基于标准 HTML、CSS 和 JavaScript 构建,并提供了一套声明式的、组件化的编程模型,可以高效地开发用户界面。…

vue3实现在新标签中打开指定的网址

有一个文件列表,如下图: 我希望点击查看按钮的时候,能够在新的标签页面打开这个文件的地址进行预览,该如何实现呢? 比如: 实际上要实现这个并不难,参考demo如下: 首先&#x…

【Go系列】Go的UI框架GIO

其实主要我是要花一个折线图,但是使用Fyne貌似画不出来,使用plot也没法动态生成,听说Gio可以,那就先介绍一下什么是Gio把。 GIO(gioui.org)是一个用于Go语言的跨平台GUI库,旨在为开发人员提供构…

【ROS2】高级:安全-设置安全性

目标:使用 sros2 设置安全性。 教程级别:高级 时间:15 分钟 内容 背景 安装 从源代码安装选择替代中间件 运行演示 1. 为安全文件创建一个文件夹2. 生成密钥库3. 生成密钥和证书4. 配置环境变量5. 运行 talker/listener 演示 参加测验&#x…

一起搭WPF界面之MVVM架构的简单搭建

一起搭WPF界面之MVVM架构的简单搭建 1 前言2 创建项目2.1新建项目2.2WPF2.3创建完成 3 MVVM划分3.1 划分逻辑3.2文件夹创建3.3文件创建3.3.1 Views——可在主界面的基础上,划分多个用户控件模块3.3.2 ViewModels——创建数据结构存放的cs文件3.3.3 Models——创建处…

在 VM 虚拟机中安装 openEuler + 桌面

在 VM 虚拟机中安装 openEuler 1 介绍2 步骤语言Root 账户安装位置网络和主机名自动检索到【推荐】手动配置网络 软件选择安装完成登录测试网络curl ip / ping ipip link show / ip a如网络不通,可检查网卡状态和dns配置 安装命令设置以图形界面的方式启动【dde】第…

sql-libs通关详解

1-4关 1.第一关 我们输入?id1 看回显,通过回显来判断是否存在注入,以及用什么方式进行注入,直接上图 可以根据结果指定是字符型且存在sql注入漏洞。因为该页面存在回显,所以我们可以使用联合查询。联合查询原理简单说一下&…

PyTorch之ResNet101模型与示例

【图书推荐】《PyTorch深度学习与企业级项目实战》-CSDN博客 ResNet101模型 ResNet101是一种深度残差网络,它是ResNet系列中的一种,下面详解ResNet101网络结构。 ResNet101网络结构中有101层,其中第一层是77的卷积层,然后是4个…

Nacos 配置中心配置加载源码分析

前言:上一篇我们分析 Nacos 配置中心服务端源码的时候,多次看到有去读取本地配置文件,那本地配置文件是何时加载的?本篇我们来进行详细分析。 Nacos 系列文章传送门: Nacos 初步认识和 Nacos 部署细节 Nacos 配置管…

https改造-python https 改造

文章目录 前言https改造-python https 改造1.1. https 配置信任库2. 客户端带证书https发送,、服务端关闭主机、ip验证 前言 如果您觉得有用的话,记得给博主点个赞,评论,收藏一键三连啊,写作不易啊^ _ ^。   而且听说点赞的人每…