普中51单片机:DS1302时钟芯片讲解与应用(十)

news2024/9/21 6:19:59

在这里插入图片描述

文章目录

  • 引言
  • 基本特性
    • 什么是RAM?
    • 什么是涓流充电?
  • 电路图和引脚说明
  • 通信协议以及工作流程
  • 寄存器
    • 控制寄存器
    • 日历/时钟寄存器
  • DS1302读写时序
  • 代码演示——数码管显示时分秒

引言

DS1302 是一款广泛使用的实时时钟 (RTC) 芯片,具有低功耗、内置电池备份和串行通信接口等优点。它常用于需要精确时间保持的应用中,如电子时钟、数据记录器和嵌入式系统。

基本特性

DS1302是一款高性能、低功耗的实时时钟芯片,兼容TTL电平,可以直接与单片机的IO口连接。以下是其主要特性:

  • 时间保持功能:DS1302 可以保持秒、分、时、日、周、月、年等时间信息,并能自动调整月份天数和闰年。
  • 串行通信接口:使用简单的串行接口 (SPI) 进行通信,仅需三根线:RST(复位)、SCLK(串行时钟)和 I/O(串行数据)。
  • 低功耗:工作电流低,适合电池供电的应用。工作电压范围为2.0V至5.5V,工作电流小于300nA。
  • 内置 RAM:31 字节的静态 RAM,用于存储用户数据。RAM数据时有两种方式:单字节传送或多字节传送(字符组的方式)
  • 电池备份:支持备用电池,确保在主电源断电时继续保持时间。
  • 涓流充电:当主电源关闭或电压不足时,DS1302可以通过涓流充电寄存器从备用电源(VCC2)获取电力,维持时钟的运行和RAM中的数据。

什么是RAM?

RAM,全称为随机存取存储器(Random Access Memory),是计算机中的一种重要存储器。它的主要特点是可以随时读写数据,并且速度非常快。

RAM是计算机的“短期记忆”。当你打开一个程序或文件时,计算机会将其数据加载到RAM中,以便快速访问和处理。例如,当你在编辑一篇文档时,文档的内容会暂时存储在RAM中,这样你可以快速进行编辑和保存。RAM是易失性存储器,这意味着一旦断电,存储在RAM中的数据就会丢失。这就像是你在白板上写字,一旦擦掉(断电),字迹就消失了。RAM与CPU直接交换数据,速度非常快。它是计算机运行速度的重要因素之一。更多的RAM意味着计算机可以同时处理更多的任务,而不会变慢。

在DS1302时钟芯片中,31字节的静态RAM(SRAM)是一个小型的存储区域,用于存储用户数据。静态表示SRAM中的数据只要保持通电,就可以一直保存,不需要像动态RAM(DRAM)那样定期刷新。31字节表示这个SRAM可以存储31个字节的数据,总共248位(31 x 8 = 248位)。

假设你有一个小笔记本,每一页可以写8个字母,那么31字节的SRAM就相当于这个笔记本有31页,每页可以写8个字母。你可以随时在任何一页上写字或擦掉重写。

什么是涓流充电?

想象一下,你有一个珍贵的水晶杯,需要用极细的水流来清洗,以防止水流过猛导致损坏。涓流充电也是同样的道理。这是一种以非常低的电流对电池进行充电的方法,目的是在电池接近充满时,继续以小电流充电,确保电池完全充满而不受损。

电池充电通常有三个阶段:恒流充电、恒压充电和涓流充电。当电池电量接近满电时,充电器会自动切换到涓流模式,这时候的电流非常小,就像是给电池做最后的“润色”。

在许多电子设备中,如手机、笔记本电脑,甚至一些特殊的芯片(例如DS1302时钟芯片)都采用了涓流充电技术。这些设备在主电源断电后,可以依靠涓流充电来维持电池健康,保证设备在关键时刻不掉链子。

电路图和引脚说明

在这里插入图片描述

引脚名引脚顺序作用
VCC11主电源电压输入
VCC28备用电源电压输入(电池)
X1、X22,3外部晶振引脚
GND4
SCLK7串行时钟输入(串行通信)
I/O6串行数据输入/输出
CE5控制使能

详细作用说明

  1. VCC1 (1号引脚):这是DS1302的主电源输入引脚。在正常工作时,它接收来自外部电源的电压。如果VCC1的电压高于VCC2(备用电源),DS1302将使用VCC1作为其电源。
  2. VCC2 (8号引脚):此引脚通常连接到一个电池,作为备用电源。在主电源VCC1失效的情况下,VCC2可以继续为DS1302提供电源,确保时间信息不会丢失。
  3. X1、X2 (2号和3号引脚):这两个引脚需要外接一个32.768kHz的晶振。晶振为DS1302提供时钟信号,确保时间的准确性。X1是输入端,X2是输出端(在某些应用中可能不使用)。
  4. GND (4号引脚):这是DS1302的接地引脚,用于建立电路的参考电位,确保电路中的信号有正确的电压水平。
  5. SCLK (7号引脚):此引脚接收来自微控制器或其他控制设备的串行时钟信号。数据传输的时序由SCLK控制,数据在SCLK的上升沿或下降沿被读取或写入,具体取决于通信协议。
  6. I/O (6号引脚):这个双向引脚用于在DS1302和外部设备之间传输数据。在写入操作中,数据通过此引脚输入到DS1302;在读取操作中,数据从DS1302输出到此引脚。
  7. CE (5号引脚):CE引脚用于控制DS1302的激活状态。当CE引脚被拉高(即逻辑1)时,DS1302芯片被激活并开始工作;当CE引脚被拉低(即逻辑0)时,芯片进入低功耗状态,停止工作。

在这里插入图片描述

通信协议以及工作流程

DS1302 通过三线接口 (SPI) 与主控设备通信。通信过程如下:

  1. 启动通信:将 RST 引脚置高。
  2. 发送命令字节:通过 SCLK 引脚发送一个命令字节,指定读写操作和寄存器地址。
  3. 数据传输:通过 I/O 引脚进行数据读写。
  4. 结束通信:将 RST 引脚置低。

寄存器

DS1302的操作就是对其内部寄存器的操作,DS1302内部共有12个寄存器,其中有:7 个寄存器与日历、时钟相关,存放的数据位为 BCD码形式。此外,DS1302还有年份寄存器、控制寄存器、充电寄存器、时钟突发寄存器及与 RAM 相关的寄存器等。时钟突发寄存器可一次性顺序读写除充电寄存器以外的寄存器。

控制寄存器

用于存放DS1302控制命令的,DS1302的RST复位引脚,如果是高电平,可以开始工作,第一个写入的自己就是控制命令,它用于对DS1302读写进行控制。格式如下:
在这里插入图片描述

控制寄存器的字节格式中,最高位(D7)固定为1,这是命令有效的标志。第六位(D6)如果为0则表示存取日历时钟数据,为1表示存取RAM数据。接下来的五位(D5~D1)是地址位,用于选择将要进行读写操作的寄存器。最低位(D0)是读写选择位,0表示写入,1表示读取。

控制字总是从最低位开始输出。在控制字指令输入后的下一个SCLK时钟的上升沿时,数据被写入DS1302,数据输入从最低位(0位)开始。同样,在紧跟8位的控制字指令后的下一个SCLK脉冲的下降沿,读出DS1302的数据,读出的数据也是从最低位到最高位。
在这里插入图片描述

日历/时钟寄存器

DS1302时钟芯片的日历/时钟寄存器是其核心功能之一,用于存储和提供当前的日期和时间信息。存放是以BCD码格式进行操作。
在这里插入图片描述

  1. 秒寄存器(地址0x80):存储秒的值,格式为BCD码。低四位表示秒的个位,第五位到第七位表示秒的十位。第八位(CH)是时钟运行标志位,当CH=0时,时钟运行;当CH=1时,时钟暂停。
  2. 分寄存器(地址0x82):存储分钟的值,格式为BCD码。低四位表示分钟的个位,第五位到第七位表示分钟的十位。最高位(第八位)固定为0
  3. 小时寄存器(地址0x84):存储小时的值,格式为BCD码。低四位表示小时的个位,第五位到第七位表示小时的十位。第八位(12/24)用于选择12小时制或24小时制。当12/24=0时,为24小时制;当12/24=1时,为12小时制,且第5位表示上午(AM)或下午(PM)。
  4. 日期寄存器(地址0x86):存储日期的值,格式为BCD码。低四位表示日期的个位,第五位到第七位表示日期的十位。

在这里插入图片描述

  1. 月份寄存器(地址0x88):存储月份的值,格式为BCD码。低四位表示月份,第五位表示月份的十位。
  2. 星期寄存器(地址0x8A):存储星期的值,格式为BCD码。低三位表示星期几,从星期一到星期日。
  3. 年份寄存器(地址0x8C):存储年份的值,格式为BCD码。低四位表示年份的个位,第五位到第七位表示年份的十位。DS1302的年份是从2000年开始的,因此设置年份时需要减去2000。
  4. 写保护寄存器:DS1302具有写保护功能,低七位全部为固定0,WP用于控制是否开启写保护功能,WP逻辑1为开启,只能读不能写,如果要进行操作,将WP设置为逻辑0,关闭保护进行写入。
  5. 慢充电寄存器:DS1302支持涓流充电,当主电源关闭或电压不足时,DS1302可以通过涓流充电寄存器从备用电源(VCC2)获取电力,维持时钟的运行和RAM中的数据。通过特定的控制命令,可以启用或禁用涓流充电功能。这允许用户根据需要控制充电过程,以节省电力或延长备用电源的使用寿命。

BCD码:所有日历/时钟寄存器中的数据都以BCD码格式存储。BCD码是一种二进制编码的十进制数,每四位二进制数表示一个十进制数字(0~9)。

DS1302读写时序

数据是从低位开始写入,三线制SPI的接口:CE,SELK、I/O,当对DS1302操作的时候,CE要设置为"1"(高电平),操作完成之后对CE设置“0”(低电平),等待下一次操作。SCLK为上升沿的时候写入数据。当发送完一个控制命令字节。下一个下降沿开始进行数据的读取。
在这里插入图片描述

代码演示——数码管显示时分秒

初始化显示时间:13时51分47秒。实物图:SCLK连接到P36引脚,IO连接到P34引脚,CE连接到P35引脚,具体可查看所使用的开发板电路图进行查看。关于数码管讲解请查看:普中51单片机:数码管显示原理与实现详解(四)

#include <REGX52.H>
#include <intrins.h>

sbit DS1302_RST = P3^5;
sbit DS1302_SCLK = P3^6;
sbit DS1302_IO = P3^4;

//共阴极数码管显示 0~F 的段码数据
unsigned char gsmg_code[17]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,
0x7f,0x6f,0x77,0x7c,0x39,0x5e,0x79,0x71};

void DelayXms(unsigned int xms)	//@12.000MHz
{
	unsigned char data i, j;
	
	while(xms)
	{
		i = 2;
		j = 239;
		do
		{
			while (--j);
		} while (--i);
		xms--;
	}
}

void Init_Port(unsigned char Location)
{	
	switch(Location)
	{
		case 1:
			P2_2 = 0;P2_3 = 0;P2_4 = 0;
			break;
		case 2:
			P2_2 = 1;P2_3 = 0;P2_4 = 0;
			break;
		case 3:
			P2_2 = 0;P2_3 = 1;P2_4 = 0;
			break;
		case 4:
			P2_2 = 1;P2_3 = 1;P2_4 = 0;
			break;
		case 5:
			P2_2 = 0;P2_3 = 0;P2_4 = 1;
			break;
		case 6:
			P2_2 = 1;P2_3 = 0;P2_4 = 1;
			break;
		case 7:
			P2_2 = 0;P2_3 = 1;P2_4 = 1;
			break;
		case 8:
			P2_2 = 1;P2_3 = 1;P2_4 = 1;
			break;
	}
}

void DS1302_write_byte(unsigned char addr,unsigned char dat)
{
	unsigned char i = 0;
	DS1302_RST = 0;
	_nop_();//延时一微秒
	DS1302_SCLK = 0;
	_nop_();//延时一微秒
	DS1302_RST = 1;//通信开始
	_nop_();
	for(i = 0;i < 8;i++)//写入控制
	{
		DS1302_IO = addr&0x01;//从低位开始
		addr>>=1;
		DS1302_SCLK = 1;
		_nop_();//延时一微秒
		DS1302_SCLK = 0;
		_nop_();
	}
	for(i = 0;i < 8;i++)//写入数据
	{
		DS1302_IO = dat&0x01;//从低位开始
		dat>>=1;
		DS1302_SCLK = 1;
		_nop_();//延时一微秒
		DS1302_SCLK = 0;
		_nop_();
	}
	DS1302_RST = 0;//通信结束
}

//读
unsigned char DS1302_read_byte(unsigned char addr)
{
	
	unsigned char i = 0;
	unsigned char temp = 0;
	unsigned char value = 0;
	

	DS1302_RST = 0;
	_nop_();//延时一微秒
	DS1302_SCLK = 0;
	_nop_();//延时一微秒
	DS1302_RST = 1;//通信开始
	for(i = 0;i < 8;i++)//写入控制
	{
		DS1302_IO = addr&0x01;//从低位开始
		addr>>=1;
		DS1302_SCLK = 1;
		_nop_();//延时一微秒
		DS1302_SCLK = 0;
	}

	for(i = 0;i < 8;i++)//读取数据
	{
		temp = DS1302_IO;//从低位开始
		value=(temp<<7)|(value>>1);
		DS1302_SCLK = 1;
		_nop_();//延时一微秒
		DS1302_SCLK = 0;
	}
	DS1302_RST = 0;
	_nop_();	
	DS1302_SCLK=1;//对于实物中,P3.4口没有外接上拉电阻的,此处代码需要添加,使数据口有一个上升沿脉冲。
	_nop_();
	DS1302_IO = 0;
	_nop_();
	DS1302_IO = 1;
	_nop_();	
	return value;	
}

//秒分时日月周年
unsigned char gWrite_rtc_addr[]={0x80,0x82,0x84,0x86,0x88,0x8a,0x8c};
unsigned char gRead_rtc_addr[]={0x81,0x83,0x85,0x87,0x89,0x8b,0x8d};

unsigned char gDS1302_time[]={0x47,0x51,0x13,0x24,0x07,0x06,0x24};

void Init_Ds1302(void)
{
	unsigned char i = 0;
	//关闭写保护0x8e表示写保护寄存器
	DS1302_write_byte(0x8e,0x00);
	for(i = 0;i < 7;i++)
	{
		DS1302_write_byte(gWrite_rtc_addr[i],gDS1302_time[i]);
	}
	//打开写保护
	DS1302_write_byte(0x8e,0x80);
}

void ds1302_read_time(void)
{
	unsigned char i = 0;
	for(i = 0;i < 7;i++)
	{
		gDS1302_time[i] = DS1302_read_byte(gRead_rtc_addr[i]);
	}
}

void main()
{
	unsigned char i = 0;
	unsigned char time_buf[8];
	Init_Ds1302();//设置时间	
	while(1)
	{
		ds1302_read_time();//读取时间
		time_buf[0] = gsmg_code[gDS1302_time[2]/16];//时 转换为数码管 16进制获取第一位
		time_buf[1] = gsmg_code[gDS1302_time[2]&0x0f];//时 转换为数码管 16进制获取第二位
		time_buf[2] = 0x40;// -
		time_buf[3] = gsmg_code[gDS1302_time[1]/16];//分 转换为数码管 16进制获取第一位
		time_buf[4] = gsmg_code[gDS1302_time[1]&0x0f];//分 转换为数码管 16进制获取第二位
		time_buf[5] = 0x40;// -
		time_buf[6] = gsmg_code[gDS1302_time[0]/16];//秒 转换为数码管 16进制获取第一位
		time_buf[7] = gsmg_code[gDS1302_time[0]&0x0f];//秒 转换为数码管 16进制获取第二位
		for(i = 1; i <= 8;i++)
		{
			Init_Port(i);
			P1 = time_buf[i-1];
			DelayXms(1);
			P1 = 0x00;//消影
		}		
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1947338.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Docker-Compose实现MySQL之主从复制

1. 主服务器(IP:192.168.186.77) 1.1 docker-compose.yml services:mysql-master:image: mysql:latest # 使用最新版本的 MySQL 镜像container_name: mysql-master # 容器的名称environment:MYSQL_ROOT_PASSWORD: 123456 # MySQL root 用户的密码MYSQL_DATABASE: masterd…

【科研】# Taylor Francis 论文 LaTeX template模版 及 Word模版

【科研写论文】系列 文章目录 【科研写论文】系列前言一、Word 模板&#xff08;附下载网址&#xff09;&#xff1a;二、LaTeX 版本方法1&#xff1a;直接网页端打开&#xff08;附网址&#xff09;方法2&#xff1a;直接下载到本地电脑上编辑下载地址说明及注意事项 前言 给…

【Git】merge合并分支

两个分支未修改同一个文件的同一处位置: Git自动合并 两个分支修改了同一个文件的同一处位置:产生冲突 例&#xff1a; 在master分支修改了main同时&#xff0c;feat分支也修改了相同的文件 合并的时候就会产生冲突 解决方法: Step1- 手工修改冲突文件&#xff0c;合并冲突内容…

C# 实现条件变量

C# 进程通信系列 第一章 共享内存 第二章 条件变量&#xff08;本章&#xff09; 第三章 消息队列 文章目录 C# 进程通信系列前言一、关键实现1、用到的主要对象2、初始化区分创建和打开3、变量放到共享内存4、等待和释放逻辑 二、完整代码三、使用示例1、线程同步控制2、进程…

物理机 gogs+jenkins+sonarqube 实现CI/CD

一、部署gogs_0.11.91_linux_amd64.tar.gz gogs官网下载&#xff1a;https://dl.gogs.io/ yum -y install mariadb-serversystemctl start mariadbsystemctl enable mariadbuseradd gittar zxvf gogs_0.11.91_linux_amd64.tar.gzcd gogsmysql -u root -p < scripts/mysql.…

减轻幻觉新SOTA,7B模型自迭代训练效果超越GPT-4,上海AI lab发布

LLMs在回答各种复杂问题时&#xff0c;有时会“胡言乱语”&#xff0c;产生所谓的幻觉。解决这一问题的初始步骤就是创建高质量幻觉数据集训练模型以帮助检测、缓解幻觉。 但现有的幻觉标注数据集&#xff0c;因为领域窄、数量少&#xff0c;加上制作成本高、标注人员水平不一…

大厂面试官问我:两个1亿行的文件怎么求交集?【后端八股文十五:场景题合集】

本文为【场景题合集】初版&#xff0c;后续还会进行优化更新&#xff0c;欢迎大家关注交流~ hello hello~ &#xff0c;这里是绝命Coding——老白~&#x1f496;&#x1f496; &#xff0c;欢迎大家点赞&#x1f973;&#x1f973;关注&#x1f4a5;&#x1f4a5;收藏&#x1f…

第一百七十八节 Java IO教程 - Java符号链接、Java文件

Java IO教程 - Java符号链接 符号链接包含对另一个文件或目录的引用。 符号链接引用的文件称为符号链接的目标文件。 符号链接上的操作对应用程序是透明的。我们可以使用java.nio.file.Files类处理符号链接。 isSymbolicLink(Path p)方法检查指定路径指定的文件是否是符号链…

解决 MDCFilter 引起的 Shiro UnavailableSecurityManagerException 异常:将过滤器交给 Shiro 管理

若将自定义的 MDCFilter 注册到 FilterRegistrationBean 中&#xff0c;而又在 MDCFilter 中使用了和 Shiro 相关的操作&#xff08;如获取当前登录用户&#xff09;&#xff0c;此时会因为 MDCFilter 先于 SecurityManager 实例化导致出现 UnavailableSecurityManagerExceptio…

C语言 ——— 函数指针数组的讲解及其用法

目录 前言 函数指针数组的定义 函数指针数组的使用 前言 数组是存放一组相同类型数据的存储空间 关于指针数组的知识请见&#xff1a;C语言 ——— 指针数组 & 指针数组模拟二维整型数组-CSDN博客 那么要将多个函数的地址存储到数组中&#xff0c;这个数组该如何定义…

太原高校大学智能制造实验室数字孪生可视化系统平台建设项目验收

随着科技的不断进步&#xff0c;智能制造已经成为推动制造业转型升级的重要力量。太原高校大学智能制造实验室紧跟时代步伐&#xff0c;积极推进数字孪生可视化系统平台的建设&#xff0c;并于近日圆满完成了项目的验收工作。这一里程碑式的成果&#xff0c;不仅标志着实验室在…

Angular由一个bug说起之八:实践中遇到的一个数据颗粒度的问题

互联网产品离不开数据处理&#xff0c;数据处理有一些基本的原则包括&#xff1a;准确性、‌完整性、‌一致性、‌保密性、‌及时性。‌ 准确性&#xff1a;是数据处理的首要目标&#xff0c;‌确保数据的真实性和可靠性。‌准确的数据是进行分析和决策的基础&#xff0c;‌因此…

Three.js投射光线实现三维物体交互

<template><div id"webgl"></div> </template><script setup> import * as THREE from three //导入轨道控制器 import { OrbitControls } from three/examples/jsm/controls/OrbitControls // 导入 dat.gui import { GUI } from thre…

谷粒商城实战笔记-43-前端基础-Vue-使用Vue脚手架进行模块化开发

文章目录 一&#xff0c;Vue的模块化开发1&#xff0c;目录结构2&#xff0c;单文件组件 (SFC)3&#xff0c;模块化路由4&#xff0c;Vuex 模块5&#xff0c;动态组件和异步组件6&#xff0c;抽象和复用7&#xff0c;构建和打包8&#xff0c;测试9&#xff0c;文档和注释10&…

基于Neo4j将知识图谱用于检索增强生成:Knowledge Graphs for RAG

Knowledge Graphs for RAG 本文是学习https://www.deeplearning.ai/short-courses/knowledge-graphs-rag/这门课的学习笔记。 What you’ll learn in this course Knowledge graphs are used in development to structure complex data relationships, drive intelligent sea…

Node.js知识点总结

Node.js知识点总结 Node.js其本质和浏览器一样是一个JavaScript运行环境。浏览器的运行环境为V8引擎浏览器内置API&#xff08;BOM、DOM、Canvas);而node.js的运行环境是V8引擎node提供的API(fs、path、http)。它使JavaScript可以编写后端。 基本知识 fs文件系统模块 它提供一…

深度学习复盘与论文复现E

文章目录 一、项目复现的问题及其解决方案1、 Cannot find DGL C graphbolt library2、 “is“ with a literal. Did you mean ““?”3、运行SEG、SPG查看GATNet的网络结构4、关于LI-FPN项目找不到数据粒度不匹配问题5、关于LI-FPN项目num_samples为空6、解决路径问题7、 !ss…

Nginx 怎样处理请求的缓存数据清理策略?

&#x1f345;关注博主&#x1f397;️ 带你畅游技术世界&#xff0c;不错过每一次成长机会&#xff01; 文章目录 Nginx 怎样处理请求的缓存数据清理策略&#xff1f;一、理解 Nginx 缓存的重要性二、Nginx 缓存数据的类型&#xff08;一&#xff09;静态文件缓存&#xff08;…

PHP简单商城单商户小程序系统源码

&#x1f6cd;️轻松开店&#xff0c;触手可及&#xff01;「简单商城小程序」让电商梦想照进现实&#x1f31f; &#x1f389;开店新风尚&#xff0c;「简单商城小程序」引领潮流&#xff01; 还在为繁琐的电商开店流程烦恼吗&#xff1f;想要快速搭建自己的线上商城&#x…

Linux嵌入式学习——数据结构——线性表的链式结构

线性表的链式存储 解决顺序存储的缺点&#xff0c;插入和删除&#xff0c;动态存储问题。 特点&#xff1a; 线性表链式存储结构的特点是一组任意的存储单位存储线性表的数据元素&#xff0c;存储单元可以是连续的&#xff0c;也可以不连续。可以被存储在任意内存未被占…