【嵌入式开发之标准I/O】文件I/O的基本概念,打开、关闭、定位函数及实例

news2024/11/15 20:08:48

文件I/O和标准I/O

什么是文件I/O?什么是标准I/O?

  • 文件I/O:文件I/O又称系统IO,系统调用,称之为不带缓存的IO(unbuffered I/O)。是操作系统提供的API接口函数。不带缓存指的是每个read,write都调用内核中的一个系统调用。也就是一般所说的低级I/O——操作系统提供的基本IO服务,与os绑定,特定于linix或unix平台。

  • 标准I/O:标准I/O是ANSI C建立的一个标准I/O模型,是一个标准函数包和stdio.h头文件中的定义,具有一定的可移植性。标准I/O库处理很多细节。例如缓存分配,以优化长度执行I/O等。标准的I/O提供了三种类型的缓存。

    (1)全缓存:当填满标准I/O缓存后才进行实际的I/O操作。 
    (2)行缓存:当输入或输出中遇到新行符时,标准I/O库执行I/O操作。 
    (3)不带缓存:stderr就是了。

文件I/O和标准I/O的区别 

文件I/O 又称为低级磁盘I/O,遵循POSIX相关标准。任何兼容POSIX标准的操作系统上都支持文件I/O。标准I/O被称为高级磁盘I/O,遵循ANSI C相关标准。只要开发环境中有标准I/O库,标准I/O就可以使用。(Linux 中使用的是GLIBC,它是标准C库的超集。不仅包含ANSI C中定义的函数,还包括POSIX标准中定义的函数。因此,Linux 下既可以使用标准I/O,也可以使用文件I/O)。

通过文件I/O读写文件时,每次操作都会执行相关系统调用。这样处理的好处是直接读写实际文件,坏处是频繁的系统调用会增加系统开销,标准I/O可以看成是在文件I/O的基础上封装了缓冲机制。先读写缓冲区,必要时再访问实际文件,从而减少了系统调用的次数。

文件I/O中用文件描述符表现一个打开的文件,可以访问不同类型的文件如普通文件、设备文件和管道文件等。而标准I/O中用FILE(流)表示一个打开的文件,通常只用来访问普通文件。

文件I/O:文件描述符

文件描述符不是指针,与标准IO FILE *fp不同,文件描述符是一个非负整数。 

  • 每个打开的文件都对应一个文件描述符。
  • 文件描述符是一个非负整数。
  • Linux为程序中每个打开的文件分配一个文件描述符。
  • 文件描述符从0开始分配,依次递增,每个3-1023的数字表示一个文件,数字不同,表示的文件不同,前三个被0-标准输入,1-标准输出,2-错误占用。
  • 文件IO操作通过文件描述符来完成。

文件I/O和标准I/O使用的函数 

标准I/O文件I/O(低级I/O)
打开fopen,freopen,fdopenopen
关闭fcloseclose

getc,fgetc,getchar

fgets,gets

fread

read

putc,fputc,putchar

fputs,puts,

fwrite

write

文件I/O打开函数:open()

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int open(const char *pathname, int flags); //不能创建文件
int open(const char *pathname, int flags, mode_t mode);

主要功能

open函数用来创建或打开一个文件。

返回值

 成功时返回文件描述符;出错时返回EOF

  • 打开文件时使用两个参数,不可创建文件
  • 创建文件时第三个参数指定新文件的权限,(只有在建立新文件时有效)此外真正建文件时的权限会受到umask 值影响,实际权限是mode-umaks
  • 可以打开设备文件,但是不能创建设备文件(创建设备文件用mknode)

参数介绍

 与标准I/O的权限对照(普通用户)

标准I/O文件I/O
rO_RDONLY
r+O_RDWR
wO_WRONLY | O_CREAT | O_TRUNC, 0664
w+O_RDWR | O_CREAT | O_TRUNC, 0664
a

O_WRONLY | O_CREAT | O_APPEND, 0664

a+O_RDWR | O_CREAT | O_APPEND, 0664

umask :用来设定文件或目录的初始权限

文件和目录的真正初始权限

文件或目录的初始权限(0664) = 文件或目录的最大默认权限(0666) - umask权限(0002)

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int main(int argc, const char *argv[])
{	
	int fd;
	fd = open("test.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
	if (fd < 0) {
		printf("open file err\n");
		return 0;
	}

	printf("success\n");

	return 0;
}

文件I/O关闭函数:close()

 #include  <unistd.h>
 int  close(int fd);

主要功能

close函数用来关闭一个文件。

返回值

成功时返回0;出错时返回EOF

打开和关闭函数实例代码

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

int main(int argc, const char *argv[])
{	
	int fd;
	int ret;

	fd = open("test.txt", O_WRONLY | O_CREAT | O_TRUNC, 0666);
	if (fd < 0) {
		printf("open file err\n");
		return 0;
	}

	printf("success, fd = %d\n", fd);
	if ((ret = close(fd)) < 0) {
		printf("close failed\n");
	}

	ret = close(fd);
	printf("close failed\n");

	return 0;
}

运行结果 

success, fd = 3
close failed

文件I/O读取函数:read()

 #include  <unistd.h>
 ssize_t  read(int fd, void *buf, size_t count);

主要功能

 read函数用来从文件中读取数据

  • 读到文件末尾时返回0
  • buf是接收数据的缓冲区
  • count不应超过buf大小

返回值

成功时返回实际读取的字节数;出错时返回EOF 

文件I/O写入函数:write()

 #include  <unistd.h>
 ssize_t  write(int fd, void *buf, size_t count);

主要功能

write函数用来向文件写入数据

  • buf是发送数据的缓冲区
  • count不应超过buf大小

返回值

成功时返回实际写入的字节数;出错时返回EOF

文件I/O定位函数:lseek()

 #include  <unistd.h>
 off_t  lseek(int fd, off_t offset, intt whence);

主要功能

lseek函数用来定位文件,参数offset和参数whence同fseek完全一样。参见:【嵌入式开发之标准I/O】流的刷新、定位以及格式化输出、输入

返回值

成功时返回当前的文件读写位置;出错时返回EOF

文件I/O读取、写入和定位函数实例代码

#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <string.h>

int main(int argc, const char *argv[])
{
	int fd;
	int ret;
	char buf[32] = "hello word";
	char buf2[32] = {0};

	//打开文件
	fd = open("test.txt", O_RDWR | O_CREAT | O_APPEND, 0666);
	if (fd < 0) {
		printf("open file err\n");
		return 0;
	}
	printf("success, fd = %d\n", fd);

	//写入数据
	if ((ret = write(fd, buf, strlen(buf))) < 0) {
		perror("write");
		goto end;
	}
	printf("write count = %d\n", ret);

	//定位文件到开头
	lseek(fd, 0, SEEK_SET);

	//读取文件
	if (( ret = read(fd, buf2, 32)) < 0) {
		perror("read");
		goto end;
	}
	printf("read count = %d\n", ret);
	buf2[31] = 0;
	printf("buf2 = %s\n", buf2);

end:
	close(fd);

	return 0;
}

运行结果

success, fd = 3
write count = 10
read count = 10
buf2 = hello word

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1943032.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【HarmonyOS4学习笔记】《HarmonyOS4+NEXT星河版入门到企业级实战教程》课程学习笔记(二十三)

课程地址&#xff1a; 黑马程序员HarmonyOS4NEXT星河版入门到企业级实战教程&#xff0c;一套精通鸿蒙应用开发 &#xff08;本篇笔记对应课程第 33 节&#xff09; P33《32.通知-进度条通知》 下载按钮对应的逻辑&#xff1a; 取消按钮对应的逻辑&#xff1a; 暂停按钮对应的…

Java | Leetcode Java题解之第274题H指数

题目&#xff1a; 题解&#xff1a; class Solution {public int hIndex(int[] citations) {int left0,rightcitations.length;int mid0,cnt0;while(left<right){// 1 防止死循环mid(leftright1)>>1;cnt0;for(int i0;i<citations.length;i){if(citations[i]>mi…

【Django】在anaconda虚拟环境中创建Django项目

文章目录 进入工作目录创建django项目及进入vscode(打开项目目录)选择解析器 进入工作目录 cd C:\WF\developer\djangodemo创建django项目及进入vscode(打开项目目录) django-admin startproject antproject选择解析器 ctrlshiftP打开命令面板

【杰理蓝牙开发】AC695x VM接口原理与使用(1)

本文主要记录 杰理蓝牙VM接口的使用,包括原理的介绍和API接口的使用。 【杰理蓝牙开发】AC695x VM接口原理与使用(1) 0. 个人简介 && 授权须知1. 系统 flash 区域划分1.1 系统区域划分1.2 在配置文件中配置flash区域2. 系统配置项读写接口2.1 读接口:2.2 写接口:2…

MATLAB实验五:MATLAB数据分析

1. 某线路上不同时间对应的电压如下表所示&#xff1a; 1&#xff09;用 3 次多项式拟合(polyfit)该实验曲线&#xff0c;要求绘制 2 原始采样 点&#xff0c;并在 1~8 范围内&#xff0c;使用时间间隔为 0.2 的数据绘制拟合曲线。 建立一个脚本文件&#xff1a;text5_1.m 如下…

【Hot100】LeetCode—279. 完全平方数

目录 题目1- 思路2- 实现⭐完全平方数——题解思路 3- ACM 实现 题目 原题连接&#xff1a;279. 完全平方数 1- 思路 思路 动规五部曲 2- 实现 ⭐完全平方数——题解思路 class Solution {public int numSquares(int n) {// 1. 定义 dpint[] dp new int[n1];//2. 递推公式…

1Panel面板配置java运行环境及网站的详细操作教程

本篇文章主要讲解&#xff0c;通过1Panel面板实现java运行环境&#xff0c;部署网站并加载的详细教程。 日期&#xff1a;2024年7月21日 作者&#xff1a;任聪聪 独立博客&#xff1a;https://rccblogs.com/501.html 一、实际效果 二、详细操作 步骤一、给我的项目进行打包&am…

报考安全工程师,这些人千万别考!

近几年&#xff0c;注安证书的缺口很大&#xff0c;而这两年题目的难度也在逐步增大&#xff0c;考生能越早考越好。但在大环境不好时&#xff0c;很多人都想着增加点副业&#xff0c;因此很多人都会有想学习考证&#xff0c;基本上为了注安挂靠才去考的&#xff0c;有这种念头…

一次搞定!中级软件设计师备考通关秘籍

大家好&#xff0c;我是小欧&#xff01; 今天我们来聊聊软考这个话题。要是你准备参加计算机技术与软件专业技术资格&#xff08;软考&#xff09;&#xff0c;那么这篇文章就是为你量身定做的。话不多说&#xff0c;咱们直接进入正题。 什么是软考&#xff1f; 软考&#xf…

CST热仿真案例——电动车直流快充Cable热仿真

作者 | Zhou Ming 随着大功率直流充电桩的不断普及&#xff0c;我们在享受直流快充带来的高效优势外&#xff0c;更要关注直流快充的安全问题。工程师在设计中必须考虑过压、过流、短路、过温等多重保护机制&#xff0c;才能确保充电过程中的设备和人身安全。本期我们利用CST对…

在浏览器中测试JavaScript代码方法简要介绍

在浏览器中测试JavaScript代码方法简要介绍 在浏览器中测试JavaScript代码是前端开发中的一个重要技能。方法如下&#xff1a; 1. 浏览器控制台 最简单和直接的方法是使用浏览器的开发者工具中的控制台&#xff08;Console&#xff09;。 步骤&#xff1a; 在大多数浏览器…

IT common sense常识

how to input formative json data in console console.log({"message": [{"cat_id": 1,"cat_name": "大家电","cat_pid": 0,"cat_level": 0,"cat_deleted": false,,,,})2) how to clear unecessary c…

软件安全测试知识分享,第三方软件测评中心推荐

在信息技术飞速发展的今天&#xff0c;软件安全测试已经成为确保软件产品质量及用户数据安全的关键环节。 安全测试的核心是识别、评估和降低软件系统中潜在的安全风险。通过深度剖析软件架构、代码及其使用环境&#xff0c;测试人员能够找出可能被黑客攻击的薄弱环节。所谓“…

QSqlRelationalTableModel 增删改查

QSqlRelationalTableModel 可以作为关系数据表的模型类&#xff0c;适用于三范式设计的表&#xff0c;主表中自动加载外键表中的名称。本文实现QSqlRelationalTableModel 为模型类&#xff0c;实现增删改查。 目录 0.表准备 1. 构建表格数据 声明变量 表格、数据模型、选择…

5G赋能新能源,工业5G路由器实现充电桩远程高效管理

随着5G技术的广泛应用&#xff0c;新能源充电桩的5G应用正逐步构建起全新的生态系统。在数字化转型的浪潮中&#xff0c;新能源充电桩行业正迎来数字化改革。工业5G路由器的引入&#xff0c;为充电桩的远程管理提供了强有力的技术支持&#xff0c;新能源充电桩5G路由器网络部署…

Linux系统编程__进程学习1

文章目录 进程相关概念进程创建实战fork函数创建进程vfork创建进程子进程退出等待子进程孤儿进程 进程相关概念 一、什么是程序&#xff0c;什么是进程&#xff0c;有什么区别&#xff1f; 程序是静态的概念&#xff0c;gcc xxx.c –o pro 磁盘中生成pro文件&#xff0c;叫做程…

基于vue3 + vite产生的 TypeError: Failed to fetch dynamically imported module

具体参考这篇衔接&#xff1a; Vue3报错&#xff1a;Failed to fetch dynamically imported module-CSDN博客 反正挺扯淡的&#xff0c;错误来源于基于ry-vue-plus来进行二次开发的时候遇到的问题。 错误起因 我创建了一个广告管理页面。然后发现访问一直在加载中。报的是这样…

如何一键群发所有好友?

登录系统后&#xff0c;累计在线时间超过 48小时再进行群发。 第一步&#xff1a;选择联系人 点击群发助手下群发设置&#xff0c;在左侧选择微信号后&#xff0c;然后选择微信号下的微信好友/群&#xff0c;选择完成后&#xff0c;点击下一步按钮。 第二步&#xff1a;设定群…

C++ | Leetcode C++题解之第273题整数转换英文表示

题目&#xff1a; 题解&#xff1a; class Solution { public:vector<string> singles {"", "One", "Two", "Three", "Four", "Five", "Six", "Seven", "Eight", "Ni…

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第三篇 嵌入式Linux驱动开发篇-第四十四章 注册字符设备号

i.MX8MM处理器采用了先进的14LPCFinFET工艺&#xff0c;提供更快的速度和更高的电源效率;四核Cortex-A53&#xff0c;单核Cortex-M4&#xff0c;多达五个内核 &#xff0c;主频高达1.8GHz&#xff0c;2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…