【入门教程一】基于DE2-115的My First FPGA 工程

news2024/11/15 8:40:26
1.1. 概述
这是一个简单的练习, 可以帮助初学者开始了解如何使用Intel Quartus 软件进行 FPGA 开发。
在本章节中,您将学习如何编译 Verilog 代码,进行引脚分配,创建时序约束,然后对 FPGA 进行编程,驱动开发板上8 个绿色 LED 的其中一个。您将使用一个 50MHz 的时钟输入(来自 板载晶振)来驱动计数器,并将LED 指定给其中一个计数器的输出位。
教程级别 初学者
1.2. 准备工作
硬件
Terasic DE2-115 套件
基于 Cyclone IV  FPGA 芯片。
作为扬名海内外的DE2开发板的升级款,DE2-115凭借功耗低、逻辑资源多、1存储器容量大、DSP功能、以及接口丰富等特性,可满足用户对多媒体、高品质图像处理、数字信号处理等各类开发要求,深受国内外高校师生的青睐。到目前为止,成千上万片的DE2-115已经在全球千余所名校实验室里“安家”,扮演着数字逻辑、EDA、数字系统设计等多项课程的“实力派网红”!主角儿,可谓是FPGA 教育界的新一代。
软件
Intel Quartus Prime 软件套件 Lite
此版本 FPGA 设计软件非常适合初学者,因为它可以免费下载而且不需要任何许可文
件。您可以通过链接:https://fpgasoftware.intel.com/?edition=lite 或者是 https://www.intel.com/content/www/us/en/software-kit/669444/intel-quartus-prime-lite-edition-design-software-version-17-1-for-windows.html 下载。
:安装文件较大(几千兆字节),而且需要花费很长时间才能下载和安装。为了最大
限度减少下载时间和所需的磁盘空间,我们建议您只下载本练习中所需的项目。取消选
中的“ Select All , 仅选择 Quartus Prime Cyclone V device support 。如下图。
当下载并安装完 Intel Quartus 软件,您可以开始准备创建工程。
? 为什么 Intel Quartus 软件下载如此之大(请参考 1.5 章节的解释)
:本文档中的截图基于 v17.1 。使用较早版本或更高版本的 Intel Quartus 软件时,用 户体验可能有所差异。
1.3. 创建 FPGA 工程
步骤 1. 创建 Intel Quartus 软件工程
1a. 打开 Intel Quartus Prime 软件套件 Lite 版本
1-2 Intel Quartus Prime 软件窗口
4 1b. 打开 New Project Wizard
1-3 点击 New Project Wizard 按钮
1c. Introduction 对话框下点击 Next
1-4 Introduction 对话框
5 1d. Directory Name Top-Level Entity
选择目录,用于存放工程。直接在桌面新建一个my_first_fpga的文件夹,并将工程路径指定到这个文件夹,工程名称和顶层实体都取名为my_first_fpga:
夹。点击 Next
1-5 工程位置明细
此工程目录用于本示例教程,但对于以后创建新的工程我们不做推荐。
? 以后的工程文件放在哪里 (请参考 1.5 章节的解释)
6 1e. 工程类型
继续选择Next,选择 Empty Project ,然后点击 Next
1-7 Project Type 对话框
1f. 添加文件
此处不必添加任何文件。点击 Next
1-8 Add Files 对话框
7 1g. Family, Device & Board Settings
:您可能需要展开窗口查看更多器件名称。
选择以下器件:
Family : Cyclone IV E
Device name : EP4CE115F29C7
:为了选择指定的器件,您需要点击向上 / 向下箭头,滚动器件支持清单直到 发现 EP4CE115F29C7 。或者您可以在 Name filter 框中输入器件名称,以缩小器 件清单。您也可能要展开 Name 区域查看整个器件名称。
1-9 Family Device 对话框
点击 Next
1h. EDA Tool Settings
我们将使用默认的 EDA 工具和设置,所以不需要改变。点击 Next
8 1-10 EDA Tools 对话框
1i. Summary
点击 Finish
1-11 Summary 对话框
9 将显示以下窗口。
1-12 Your First Project 窗口
步骤 2. 创建 HDL 文件
硬件描述语言( HDL
我们以 Verilog 作为 HDL 来使用。如果您熟悉 C 编程语言但对于 HDL 还是新 手,Verilog C 相似。
2a. 前往 File 选项( Quartus 软件主窗口),点击 New 。选择 Verilog HDL File ,然 后点击 OK
1-13 选择 New Verilog HDL File
10 2b. 选择 File > Save As ,选择 my_first_fpga 作为文件名。这是顶层文件名(my_first_fpga.v)。点击 Save
1-14 保存 Verilog HDL 文件
步骤 3. 设计 Verilog 模块
3a. my_first_fpga.v 文件内容如下:
module my_first_fpga(
        input  wire clk,        // 50MHz input clock
        output wire LED         // LED ouput
);

// create a binary counter
reg [31:0] cnt;                 // 32-bit counter

initial begin

cnt <= 32'h00000000;            // start at zero

end

always @(posedge clk) begin

cnt <= cnt + 1;                 // count up

end

//assign LED to 25th bit of the counter to blink the LED at a few Hz
assign LED = cnt[24];

endmodule
拷贝如上代码到 my_first_fpga.v 文件中:
1-15 在文本编辑器中粘贴 Verilog HDL 代码
3b. Analysis & Synthesis
右键点击 Analysis & Synthesis ,然后点击 Start ,对 Verilog 代码执行语法检查和
综合。
或者直接点击Task窗格的Analysis & Synthesis如果您没有看到 Task 窗格,请到 View 菜单选择 Utility Windows ,然后选 择 Tasks
再或者直接点击如下如的按钮进行Analysis & Synthesis:
1-16 开始 Analysis & Synthesis
12 ? Analysis & Synthesis 过程中发生了什么?(请参考 1.5 章节的解释)
如果该过程成功完成, Analysis & Synthesis 旁边将显示一个绿色勾型标记。如果在该过程
中提示有错误,请检查您的 Verilog 代码语法 , 确保与上述代码模块完全一致。
1-17 Analysis 完成
步骤 4. 选择引脚分配
4a. Quartus 顶部导航栏,选择 Assignments > Pin Planner
1-18 Pin Planner 窗口
请注意, input (clk) output (LED) Node Name 下面已经列出,因为您已经运行
Analysis & Synthesis
1-19 Pin Planner Location 设置
4b. 依次点击每一个引脚,使 Location 列突出显示,然后输入以下表格中的 LED 和 clk 信号的引脚位置。其余列会自动填充数据(目前保持 默认值即可)。
1-20 Pin Planner 全部设置完成
其实上面表格的引脚分配信息来自DE2-115_v.x.x.x_SystemCD\DE2_115_schematic\de2-115_mb.pdf文件或者来自DE2-115_v.x.x.x_SystemCD\\DE2_115_user_manual\DE2_115_User_manual.pdf:
4f. 关闭 Pin Planner Pin Planner 退出时会自动保存修改。
步骤 5. 创建 SDC 文件
编译 Verilog 代码之前,您需要为设计提供时序约束。您将创建 SDC(Synopsis
Design Constraints) 文件,其中包含有指示 Quartus 软件如何关闭设计中的时序的指
令。如果没有这个文件的话,您将在编译过程中遇到警告消息,因为 IntelQuartus
软件不知道如何关闭设计中的时序。
5a. my_first_fpga  工程目录下创建 my_first_fpg.sdc 文件。与 Verilog 文件( .v 扩展文件)在同一
个目录下。将 如下 文件内容拷贝到 my_first_fpg.sdc 文件。
# inform quartus that the clk port brings a 50MHz clock into our design so
# that timing closure on our design can be analyzed

create_clock -name clk -period "50MHz" [get_ports clk]

# inform quartus that the LED output port has no critical timing requirements
# its a single output port driving an LED, there are no timing relationships
# that are critical for this

set_false_path -from * -to [get_ports LED]

15 5b. 保存 blink.sdc 文件。
? 什么是 SDC 文件,为什么需要它(请参考 1.5 章节的解释)
1-21 SDC 文件位置
5c. 现在把该 SDC 文件添加到 Intel Quartus 软件工程。选择 Project > Add/Remove
Files in Project . 在出现的 Settings 对话框中,点击 File name 文本框右侧的 “…”
浏览按钮。显示文件浏览对话框。选择 blink.sdc 文件,并点击 Open 按钮关闭
该对话框。这时候 blink.sdc 文件会在工程文件清单里,点击 OK 按钮关闭
Settings 对话框。
步骤 6. 编译 Verilog 代码
6a. 右键点击 Compile Design ,然后点击 Start . 这些工具会对设计进行综合、布局
布线、组合和执行时序分析。因为只有少数代码行,编译只需花几分钟就可完
成。
? 布局布线过程中发生了什么(请参考 1.5 章节的解释)
? Assembler 过程中发生了什么(请参考 1.5 章节的解释)
? 什么是时序分析(请参考 1.5 章节的解释)
16 1-22 编译设计
编译完成后,将会出现类似于如下的总结报告。
1-23 编译总结
编译完 Verilog 代码后,就可以对 FPGA 进行编程。
步骤 7. FPGA 编程
最后一步就是对 FPGA 进行编程。
FPGA 进行编程,需要通过 USB Blaster 端口将开发板与电脑连接。
17 7a. 通过 USB Blaster  端口将开发板与电脑连接。
7b. 开发板连接电源
7c. 右键点击 Program Device (Open Programmer) 打开 Programmer 窗口。
1-24 打开 Quartus 软件的 Programmer 工具
7d. 选择 Hardware Setup
1-25 硬件设置
Currently selected hardware 的下拉项中选择 USB-Blaster[USB-0] ,然后点击 Close
1-26 Cable 选择
7e. 添加 .sof 文件
右键点击 EP4CE115F29 器件的 File 栏,选择 Change File
1-29 Change File
7g. 导向 output_file 文件夹,选择 my_first_fpga .sof ,然后点击 Open
20 1-30 选择 .sof 文件
这里的 my_first_fpga.sof 是配置文件, SRAM Object Files (.sof 文件 ) 是二进制文件包含
配置 SRAM-based 器件的数据,我们的 FPGA 是基于 SRAM 的。 Intel Quartus
件的 Program Device ( 也称为 Quartus Programmer) 查看 SOF 文件并为 FPGA
件获取下载的 bit stream
7h. 勾选 Program/Con fi gure ,然后点击 Start
1-31 开始编程
21 步骤 8. 观察闪烁的 LED
如果 Progress 进度显示 100% (Successful) LED[0] 将闪烁。
1-32 编程成功
1-33 LED 闪烁
1.4. 拓展实验
更改闪烁频率
到此,您已经获得一个成功的 LED 闪烁工程,可以使用计数器的不同 bit 来修改 LED 的闪烁 22频率。 1HZ 1 次每秒( 1 秒一个周期),以 1HZ 的频率闪烁意味着 LED 每秒闪烁一次。 2HZ 就 是LED 每秒闪烁 2 次。 0.25HZ 就是指每 4 LED 闪烁一次(慢闪)。使用计数器更高的 bit 获得 更慢的闪烁,使用低位的bit 可以获得更快闪烁(例如 cnt[22] )。测试不同的计数器位来观察 LED闪烁情况。
时钟和计数器公式
cnt[n] 其中 n 等于计数器位
2 𝑛 ; verilog 示例代码中设置 n 24
2 24 = 16777216
时钟是 50MHZ 50 000 000HZ
Clock / 2 n 等于每秒闪烁次数
50,000,000 / 16,777,216 = 2.9802
大约每秒三次闪烁。
您需要做以下三点进行更改
1. 修改 Verilog 文件( blink.v ),在赋值语句中选择一个不同的计数器 bit
2. 重新编译设计
3. 重新为 FPGA 器件编程
添加更多 LED
试着将剩余的 7 LED 中的一个或多个连到其他计数器 bits, 每个 LED 以不同的频率闪烁。例 如,可以将一个新LED 连到计数器 bit23 ,会闪烁两次,和 bit 24 闪烁一样快。或者添加其余 全部7 LED ,每一个都连到特定的计数器 bit
您需要做以下几点进行更改:
1. 修改 verilog 代码
(a) 在模块定义中添加新的 LED
(b) 列出新的 LED ,作为输出
(c) 将每个新的 LED 赋给特定的计数器 bit cnt[n]
? 我对硬件设计不熟悉,在哪能获取包含这些更改的 Verilog 代码?(请参考 1.5 章节的解
释)
2. 运行 Analysis & Synthesis
3. Pin Planner 分配 LED 输出给引脚
23 确保设置合适的 I/O standard, current strength slew rate I/O 引脚与 LED 的连接如
下所示:
4. 重新编译设计
5. 重新对器件编程
1.5. 解释
为什么 Intel Quartus 下载量如此之大?
Intel Quartus 下载包含很多不同精密工具,用于创建自定义芯片设计,比如模拟 , 综合工具,
布局和布线引擎,时序分析仪和器件编程。几乎所有的这些功能都嵌入到 Intel Prime
Software 套件 FPGA 设计软件本身。下载也包括针对 Nios II soft CPU 的嵌入式软件设计
套件,以及一个或多个 FPGA 种类数据库 如本实例中的 Cyclone V FPGA 数据库。
以后的工程文件需要放在哪?
以下是在为工程选择目录时应该采取的一些指导 :
• 不要将工程放到 Intel Quartus 软件工具目录。新的 Intel Quartus 版本每 6 个月发布,
所以将它们放到具体版本的目录,会使得它们在每个新版本安装后会显得孤立。更坏
的情况是,如果您删除旧版本的工具,工程可能会丢失。
• 避免工程路径名称有空格,因为一些工具的目录路径不允许有空格。在路径名称中,
需要用下划线或连接符代替空格
• 使用您有读 / 取权限的路径作为目录。听起来很直观,但是有时候 IT 部门会限制管理
员权限。确保创建的文件夹不需要管理员权限。
analysis &synthesis 过程中发生了什么?
Analysis & Synthesis 过程:
24 • 检查设计文件的语法和语义错误。
• 执行 netlist extraction 构建一个集成了所有设计文件的数据库。
• 将硬件描述语言 (HDL) 代码综合到适合目标 FPGA 种类的硬件模块
什么是 SDC 文件?为什么需要他?
SDC 代表 Synopsys Design Constraints ,是一种行业标准格式,它定义了硬件 (silicon) 设计的
时序约束,例如器件的目标频率,以及外围设备的时序。 SDC 文件为 Intel Quartus 软件提
供了一种验证所生成的系统是否满足其计时要求的方法。
FPGA 的综合过程中, Intel Quartus 软件调用了一个名为 TimeQuest 的设计工具,它读取
时序约束文件,计算内部 FPGA 信号的时序,并将这些时序与 SDC 文件指定的时序要求进
行比较。此过程将会创建一个报告,该报告验证是否满足时序要求,并 / 或识别未能满足时
序要求并需要优化的信号。
布局布线过程中会发生什么?
fitter 将综合设计的逻辑布局布线到目标器件资源中。把它想象成一个布线器,上面陈列一
块印制电路板,用铜线把各种器件连接在一起。在这里,器件是逻辑资源 ( 例如查找表、寄
存器、内存、乘法器等 ) ,而 traces FPGA 器件内的“导线”。
Assembler 过程中发生了什么?
Assembler 从一个成功的布局布线生成一个编程镜像,然后下载到 FPGA 器件。
什么是时序分析?
时序分析是对器件中的逻辑的时序进行综合、布局布线,以确保满足所有时序要求的过程。
目的是在满足所有时序约束的情况下实现“时序收敛”。
我对硬件设计不熟悉,我在哪能获得包含这些更改的 Verilog 代码?
就在这里:
1. // create module
2. module blink(
3. input wire clk, // 50MHz input clock
4. output wire [7:0] LED // array of 8 LEDs
5. );
6.
7. // create a binary counter
8. reg [31:0] cnt; //32 bit counter
9.
10. initial begin
11.
12. cnt <= 32’h00000000; // start count at zero
13.
14. end
15.
16. always @(posedge clk) begin
17.
18. cnt <= cnt+1; // count up
19.
20. end
21.
22. //assign LEDs to bits 28 through 21 of the counter
23.
24. assign LED = cnt[28:21];
25.
26. endmodule

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1942869.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构:二叉搜索树(简单C++代码实现)

目录 前言 1. 二叉搜索树的概念 2. 二叉搜索树的实现 2.1 二叉树的结构 2.2 二叉树查找 2.3 二叉树的插入和中序遍历 2.4 二叉树的删除 3. 二叉搜索树的应用 3.1 KV模型实现 3.2 应用 4. 二叉搜索树分析 总结 前言 本文将深入探讨二叉搜索树这一重要的数据结构。二…

【Vite】快速入门及其配置

概述 Vite是前端构建工具。vite 相较于webpack,vite采用了不同的运行方式&#xff1a; 开发时&#xff0c;并不对代码打包&#xff0c;而是直接采用ESM的方式来运行项目在项目打包部署时&#xff0c;使用 rollup 对项目进行打包除了速度外&#xff0c;vite使用起来也更加方便…

FPGA-ROM IP核的使用

1.理论 ROM全称&#xff1a;Read-Only Memory&#xff0c;也就是只读型固态半导体存储器&#xff0c;即一旦存储信息&#xff0c;无法再改变&#xff0c;信息也不会因为电源关闭消失。但在FPGA中&#xff0c;实际使用的ROM IP核并不是真正的ROM&#xff0c;其实都是内部的RAM资…

关于企业开展数据资产入表新模式

随着数字化转型持续推进&#xff0c;数据的资产化已成为数字时代不可逆转的趋势。企业数据资产入表已进入倒计时&#xff0c;企业是否科学高效地管理与评估数据&#xff0c;影响着企业是否能够意识到数据应作为资产存在&#xff0c;是否将数据纳入财务报表&#xff0c;并利用数…

【YOLOv5/v7改进系列】引入CoordConv——坐标卷积

一、导言 与标准卷积层相比&#xff0c;CoordConv 的主要区别在于它显式地考虑了位置信息。在标准卷积中&#xff0c;卷积核在输入上滑动时&#xff0c;仅关注局部区域的像素强度&#xff0c;而忽略其绝对位置。CoordConv 通过在输入特征图中添加坐标信息&#xff0c;使得卷积…

探索PyPDF2:Python中的PDF处理大师

探索PyPDF2&#xff1a;Python中的PDF处理大师 1. 背景介绍 在数字化时代&#xff0c;PDF文件因其跨平台的兼容性和内容的稳定性而广受欢迎。然而&#xff0c;处理PDF文件&#xff0c;如合并、分割、提取文本等&#xff0c;往往需要专门的工具。这就是PyPDF2库的用武之地。PyP…

Git报错fatal: detected dubious ownership in repository

报错信息 fatal: detected dubious ownership in repository at 解决办法 一行代码解决 git config --global --add safe.directory "*";如何使用git工具初始胡项目并且和远程仓库建立联系 git init–建立一个本地仓库 git add README.md–将README.md文件加入…

【技术升级】Docker环境下Nacos平滑升级攻略,安全配置一步到位

目前项目当中使用的Nacos版本为2.0.2&#xff0c;该版本可能存在一定的安全风险。软件的安全性是一个持续关注的问题&#xff0c;尤其是对于像Nacos这样的服务发现与配置管理平台&#xff0c;它在微服务架构中扮演着核心角色。随着新版本的发布&#xff0c;开发团队会修复已知的…

代码签名证书的作用

代码签名证书&#xff08;Code Signing Certificate&#xff09;主要用于验证软件的完整性和开发者身份&#xff0c;确保用户在下载或安装软件时能够确认该软件未被篡改&#xff0c;并且确实来自于其所声称的发布者。以下是代码签名证书的主要作用&#xff1a; 验证软件来源&am…

Vue Promise 必须在外层,放到其它比如ElMessageBox,将不会返回任何值

当点击switch按钮之前&#xff0c;如果当更新后再刷新的效果不好&#xff0c;需要判断行为&#xff0c;然后再决定是否打开按钮。 正确如下&#xff1a; return new Promise((resolve,reject) > {ElMessageBox.confirm(Hold?, Warning, {confirmButtonText: Yes,cancelButt…

优秀的Linux Shell终端Starship Shell的安装和配置

文章目录 简介安装startship1.安装 starship 二进制文件:2.将初始化脚本添加到您的 shell 的配置文件3、配置4、日志安装字体nerd-fonts编写脚本安装字体Nerd字体全量安装文档简介 Starship是一款轻量、迅速、可无限定制的高颜值终端! Starship Shell是一个用Rust编写的开源…

虚拟机迁移报错:虚拟机版本与主机“x.x.x.x”的版本不兼容

1.虚拟机在VCenter上从一个ESXi迁移到另一个ESXi上时报错&#xff1a;虚拟机版本与主机“x.x.x.x”的版本不兼容。 2.例如从10.0.128.13的ESXi上迁移到10.0.128.11的ESXi上。点击10.0.128.10上的任意一台虚拟机&#xff0c;查看虚拟机版本。 3.确认要迁移的虚拟机磁盘所在位…

怎么理解FPGA的查找表与CPLD的乘积项

怎么理解 fpga的查找表 与cpld的乘积项 FPGA&#xff08;现场可编程门阵列&#xff09;和CPLD&#xff08;复杂可编程逻辑器件&#xff09;是两种常见的数字逻辑器件&#xff0c;它们在内部架构和工作原理上有着一些显著的区别。理解FPGA的查找表&#xff08;LUT&#xff0c;L…

系统RDSCPU打满问题分析报告

作者&#xff1a;琉璃 1. 问题概述 在2023年9月01日09点13分&#xff0c;玳数运维组侧接收到业务侧反馈系统响应缓慢&#xff0c;与此同时运维群内新系统RDS 发出CPU打满的告警&#xff0c;告警通知如下&#xff1a; 2. 问题分析 a. 数据库会话管理核查 玳数运维组侧登录…

动态规划之三—— 从暴力递归到动态规划_数字字符串转字母字符串

题目&#xff1a; 规定1 和A 对应&#xff0c;2 和B对应&#xff0c;3 和C 对应 ... 那么一个数字字符串&#xff0c;比如“111” 就可以转化为&#xff1a;“AAA” 、“KA”、“AK” 。要求&#xff1a;给定一个只有数字字符组成的字符串str&#xff0c; 返回有多少种转化结果…

AV1技术学习:Transform Coding

对预测残差进行变换编码&#xff0c;去除潜在的空间相关性。VP9 采用统一的变换块大小设计&#xff0c;编码块中的所有的块共享相同的变换大小。VP9 支持 4 4、8 8、16 16、32 32 四种正方形变换大小。根据预测模式选择由一维离散余弦变换 (DCT) 和非对称离散正弦变换 (ADS…

只需三步申请 OV HTTPS证书

申请OV HTTPS证书的步骤主要包括申请、验证、安装三步。下面将详细展开分析每个步骤的具体操作和注意事项&#xff1a; 一、申请 选择证书供应商&#xff1a;一个可信赖且知名的证书供应商对于确保SSL证书质量和后续服务至关重要。市场上有多个知名品牌提供OV SSL证书&#xf…

运维上云/直播上云EasyNVS视频上云管理平台配置域名时的注意事项

EasyNVS视频上云管理平台拥有完整的视频流媒体服务能力和运维管理服务能力&#xff0c;不仅可以通过平台对EasyNVR、EasyGBS进行统一管理&#xff0c;还能解决设备现场没有固定公网IP却需要在公网直播的需求。 有用户反馈&#xff0c;在项目现场配置了EasyNVS的HTTPS证书&#…

Linux发展史

&#x1f4d1;打牌 &#xff1a; da pai ge的个人主页 &#x1f324;️个人专栏 &#xff1a; da pai ge的博客专栏 ☁️宝剑锋从磨砺出&#xff0c;梅花香自苦寒来 ☁️运维工程师的职责&#xff1a;监…

PCI设备BAR寄存器和PCI桥Base、Limit寄存器的初始化

初始化PCI设备的BAR&#xff08;Base Address Register&#xff09;寄存器和PCI桥的Base、Limit寄存器是配置PCI总线地址空间的关键步骤&#xff0c;这些寄存器的设置影响了系统中PCI设备和桥接器对地址空间的使用和访问。下面详细解释它们的初始化过程&#xff1a; PCI设备的…