四、GD32 MCU 常见外设介绍 (5) TIMER 模块介绍

news2024/11/23 22:24:45

 5.1.TIMER 基础知识

TIMER分高级定时器,通用定时器L0,L1,L2和基本定时器。

5.2.硬件连接说明

TIMER 属于片内外设,对于外部硬件设计,只需要单独IO口外接信号线即可。

5.3.GD32 TIMER 外设原理简介(以 GD32F30X 的高级定时器为例)

GD32 TIMER 主要特性

◼ 总通道数: 4;

◼ 计数器宽度: 16位;

◼ 定时器时钟源可选:内部时钟,内部触发,外部输入,外部触发;

◼ 多种计数模式:向上计数,向下计数和中央计数;

◼ 正交编码器接口:用来追踪运动和分辨旋转方向和位置;

◼ 霍尔传感器接口:用来做三相电机控制;

◼ 可编程的预分频器: 16位。运行时可以被改变;

◼ 每个通道可配置:输入捕获模式,输出比较模式,可编程的PWM模式,单脉冲模式;

◼ 可编程的死区时间;

◼ 自动重装载功能;

◼ 可编程的计数器重复功能;

◼ 中止输入功能;

◼ 中断输出和DMA请求:更新事件,触发事件,比较/捕获事件和中止事件;

◼ 多个定时器的菊链使得一个定时器可以同时启动多个定时器;

◼ 定时器的同步允许被选择的定时器在同一个时钟周期开始计数;

◼ 定时器主/从模式控制器。

TIMER 结构框图介绍

5.4.软件配置说明

定时中断 TIMER4

通用定时器L0(TIMER1/2/3/4) 是4通道定时器,支持输入捕获,输出比较,产生PWM信号控制电机和电源管理。通用定时器L0计数器是16位无符号计数器。通用定时器L0是可编程的,可以被用来计数,其外部事件可以驱动其他定时器。

这一章,将使用定时器产生中断,然后在中断服务函数里面翻转 LED上的电平,来指示定时器中断的产生。接下来我们以通用定时器 TIMER4 为实例,来说明要经过哪些步骤,才能达到这个要 求,并产生中断。定时器配置步骤如下:

1)TIMER4 时钟使能

rcu_periph_clock_enable(RCU_TIMER4);

2) 初始化定时器参数,设置自动重装值,分频系数,计数方式等

在库函数中,定时器的初始化参数是通过初始化函数timer_parameter_struct 实现的:

void timer_init(uint32_t timer_periph, timer_parameter_struct* initpara);

第一个参数是确定是哪个定时器,这个比较容易理解。第二个参数是定时器初始化参数结构体指针,结构体类型为timer_parameter_struct ,下面我们看看这个结构体的定义:

/* TIMER init parameter struct definitions */
typedef struct
{ 
 uint16_t prescaler; /*!< prescaler value */
 uint16_t alignedmode; /*!< aligned mode */
 uint16_t counterdirection; /*!< counter direction */
 uint32_t period; /*!< period value */
 uint16_t clockdivision; /*!< clock division value */
 uint8_t repetitioncounter; /*!< the counter repetition value */
}timer_parameter_struct;

针对 TIMR4 初始化范例代码格式

 timer_initpara.prescaler = 5999; //30M/6000 =500Hz
 timer_initpara.alignedmode = TIMER_COUNTER_EDGE;
 timer_initpara.counterdirection = TIMER_COUNTER_UP;
 timer_initpara.period = 4000-1; //800ms
 timer_initpara.clockdivision = TIMER_CKDIV_DIV1;
timer_init(TIMER4, &timer_initpara);

对于定时器定时周期的计算,设 TIMER4 的经过总线分频后得到的时钟为 30MHz,通过预分频 5999,得到 TIMER4 每个计 数的时钟为 1/(30MHz / (5999+1)) =0.2ms,4000 得到的周期为 0.2ms *4000 =800ms

3)设置 TIMER 允许更新中断

因为我们要使用 TIMER4 的更新中断,寄存器的相应位便可使能更新中断。在库函数里面定时器中断使能是通过timer_interrupt_enable函数来实现的:

void timer_interrupt_enable(uint32_t timer_periph, uint32_t interrupt);

第一个参数是选择定时器号,这个容易理解。

第二个参数非常关键,是用来指明我们使能的定时器中断的类型。

4) TIMER4 中断优先级设置

在定时器中断使能之后,因为要产生中断,必不可少的要设置 NVIC 相关寄存器,设置中断优先级。通过nvic_irq_enable 函数实现中断优先级的设置。

针对 TIMR4 初始化范例代码格式

nvic_irq_enable(TIMER4_IRQn, 1, 1);

 5)允许 TIMER工作,也就是使能 TIMER

光配置好定时器还不行,没有开启定时器,照样不能用。我们在配置完后要开启定时器,在固件库里面使能定时器的函数是通过timer_enable函数来实现的

void timer_enable(uint32_t timer_periph)

这个函数非常简单,比如我们要使能TIMER4,方法为:

timer_enable(TIMER4);

6)编写中断服务函数

在最后,还是要编写定时器中断服务函数,通过该函数来处理定时器产生的相关中断。中断产生后,通过状态寄存器的值来判断此次产生的中断属于什么类型。然后执行相关的操作,我们这里使用的是更新(溢出)中断,在处理完中断之后应来清除该中断标志。

在固件库函数里面,用来读取中断状态寄存器的值判断中断类型的函数是:

FlagStatus timer_interrupt_flag_get(uint32_t timer_periph, uint32_t interrupt)

该函数的作用是,判断定时器 TIMER 的中断类型,并判断是否发生中断。

针对 TIMR4 中断服务函数范例代码:

void TIMER4_IRQHandler(void)
{
 if(SET == timer_interrupt_flag_get(TIMER4, TIMER_INT_UP)){
 /* clear channel 0 interrupt bit */
 timer_interrupt_flag_clear(TIMER4, TIMER_INT_UP);
 gd_eval_led_toggle(LED2);
 }
}

PWM 输出 TIMER0

高级定时器(TIMER0和TIMER7)是四通道定时器,支持输入捕获和输出比较。可以产生PWM信号控制电机和电源管理。高级定时器含有一个16位无符号计数器。高级定时器是可编程的,可以用来计数,其外部事件可以驱动其他定时器。高级定时器包含了一个死区时间插入模块,非常适合电机控制。

本章,我们使用的是 TIMER0的通道0 输出 PWM(脉冲宽度调制)。

下面我们介绍通过库函数来配置该功能的步骤:

(1)开启 TIMER0 和 GPIO 时钟,配置 PA8复用功能输出。

rcu_periph_clock_enable(RCU_TIMER0);
rcu_periph_clock_enable(RCU_GPIOA);
gpio_init(GPIOA, GPIO_MODE_AF_PP, GPIO_OSPEED_50MHZ, GPIO_PIN_8);

这里还需要说明一下, 对于定时器通道的引脚关系,引脚的IO口

这里补充说明下关于TIMER的相关GPIO口的命名

TIMERx_CHx : 定时器通道x

TIMERx_CHx_ON :定时器反向通道

TIMERx_BRKIN :刹车引脚

TIMERx_ETI:外部时钟输入

(2)初始化 TIMER0 ,设置 TIMER0 的预分频和周期等参数, ,在上一节定时器中断章节我们已经有讲解,这里就不详细讲解,调用的格式为

timer_initpara.prescaler = 5999;
 timer_initpara.alignedmode = TIMER_COUNTER_EDGE;
 timer_initpara.counterdirection = TIMER_COUNTER_UP;
 timer_initpara.period = 4000;
 timer_initpara.clockdivision = TIMER_CKDIV_DIV1;
 timer_initpara.repetitioncounter = 0;
timer_init(TIMER0, &timer_initpara);

3)设置 TIMER0_CH0 的 PWM 模式, 使能 TIMER0 的 CH0 输出。 在库函数中, PWM 通道设置是通过函数timer_channel_output_config来设置的

void timer_channel_output_config(uint32_t timer_periph, uint16_t channel, timer_oc_parameter_struct* ocpara)

我们直接来看看结构体timer_oc_parameter_struct的定义:

typedef struct
{ 
 uint16_t outputstate; /*!< channel output state */
 uint16_t outputnstate; /*!< channel complementary output state */
 uint16_t ocpolarity; /*!< channel output polarity */
 uint16_t ocnpolarity; /*!< channel complementary output polarity */
 uint16_t ocidlestate; /*!< idle state of channel output */
 uint16_t ocnidlestate; /*!< idle state of channel complementary output */
}timer_oc_parameter_struct;

 针对 TIMR0 CH0 初始化范例代码格式

/* CH0, CH1 and CH2 configuration in PWM mode */
 timer_ocinitpara.outputstate = TIMER_CCX_ENABLE;
 timer_ocinitpara.outputnstate = TIMER_CCXN_DISABLE;
 timer_ocinitpara.ocpolarity = TIMER_OC_POLARITY_HIGH;
 timer_ocinitpara.ocnpolarity = TIMER_OCN_POLARITY_HIGH;
 timer_ocinitpara.ocidlestate = TIMER_OC_IDLE_STATE_LOW;
 timer_ocinitpara.ocnidlestate = TIMER_OCN_IDLE_STATE_LOW;
timer_channel_output_config(TIMER0, TIMER_CH_0, &timer_ocinitpara);

4)设置PWM输出以及脉冲宽度占空比

timer_channel_output_pulse_value_config(TIMER0, TIMER_CH_0, 2000);
 timer_channel_output_mode_config(TIMER0, TIMER_CH_0, TIMER_OC_MODE_PWM0);
 timer_channel_output_shadow_config(TIMER0, TIMER_CH_0, TIMER_OC_SHADOW_DISABLE);
 timer_primary_output_config(TIMER0,ENABLE);

5)使能 TIMER0

在完成以上设置了之后,我们需要使能 TIMER0。使能 TIMER0 的方法前面已经讲解过:

timer_enable(TIMER0);

通过以上 5 个步骤,我们就可以控制 TIMER0的 CH0 输出 PWM 波了。这里特别提醒一下大家,高级定时器虽然和通用定时器类似,但是高级定时器要想输出 PWM,必须多额外加一条函数

void timer_primary_output_config(uint32_t timer_periph, ControlStatus newvalue);

输入捕获 TIMER2

通用定时器L0(TIMER1/2/3/4) 是4通道定时器,支持输入捕获,输出比较,产生PWM信号控制电机和电源管理。通用定时器L0计数器是16位无符号计数器。通用定时器L0是可编程的,可以被用来计数,其外部事件可以驱动其他定时器。

本章要实现通过输入捕获,来获取TIMER2_CH0(PA6)上面的下降沿,下面我们介绍库函数配置上述功能输入捕获的步骤:

1)开启 TIMER2 时钟,配置 PA6为复用功能,并开启上拉电阻。

rcu_periph_clock_enable(RCU_TIMER2);
rcu_periph_clock_enable(RCU_GPIOA);
gpio_init(GPIOA, GPIO_MODE_IPU, GPIO_OSPEED_50MHZ, GPIO_PIN_6); //INCUPTURE -TIMER2

跟上一讲 PWM 输出类似,这里我们使用的是定时器2的通道 0,所以我们从对应的数据手册可以查看到对应的 IO 口为 PA6: 

 2) 初始化定时器参数,设置自动重装值, 分频系数,计数方式等

/* TIMER2 configuration */
 timer_initpara.prescaler = 5999;
 timer_initpara.alignedmode = TIMER_COUNTER_EDGE;
 timer_initpara.counterdirection = TIMER_COUNTER_UP;
 timer_initpara.period = 4000;
 timer_initpara.clockdivision = TIMER_CKDIV_DIV1;
timer_init(TIMER2, &timer_initpara);

 3)设置 TIMER2 的输入捕获参数,开启输入捕获

库函数是通过 timer_input_capture_config 函数来初始化输入比较参数的: timer_input_capture_config(TIMER2,TIMER_CH_0,&timer_icinitpara);

同样,我们来看看参数设置结构体 TIM_ICInitTypeDef 的定义:

typedef struct
{ 
 uint16_t icpolarity; /*!< channel input polarity */
 uint16_t icselection; /*!< channel input mode selection */
 uint16_t icprescaler; /*!< channel input capture prescaler */
 uint16_t icfilter; /*!< channel input capture filter control */
}timer_ic_parameter_struct;

我们的配置代码是:

/* initialize TIMER channel input parameter struct */
 timer_channel_input_struct_para_init(&timer_icinitpara);
 /* TIMER2 CH0 input capture configuration */
 timer_icinitpara.icpolarity = TIMER_IC_POLARITY_RISING;
 timer_icinitpara.icselection = TIMER_IC_SELECTION_DIRECTTI;
 timer_icinitpara.icprescaler = TIMER_IC_PSC_DIV1;
 timer_icinitpara.icfilter = 0x0;
timer_input_capture_config(TIMER2,TIMER_CH_0,&timer_icinitpara);

4) 使能捕获中断和NVIC

timer_interrupt_enable(TIMER2,TIMER_INT_CH0);
nvic_irq_enable(TIMER2_IRQn, 1, 1);

5) 编写中断服务函数

void TIMER2_IRQHandler(void){……}

 6) 使能定时器

timer_enable(TIMER2);

通过以上 6 步设置,定时器 2 的通道 0 就可以开始输入捕获了

外部时钟输入 TIMER1

通用定时器L0(TIMER1/2/3/4) 是4通道定时器,支持输入捕获,输出比较,产生PWM信号控制电机和电源管理。通用定时器L0计数器是16位无符号计数器。通用定时器L0是可编程的,可以被用来计数,其外部事件可以驱动其他定时器。

本章要实现使用TIMER1 PA0 作为时钟输入引脚,配置流程:

(1)使能GPIO,TIMER 时钟和GPIO口复用配置

rcu_periph_clock_enable(RCU_GPIOA);
rcu_periph_clock_enable(RCU_AF);
rcu_periph_clock_enable(RCU_TIMER1);
gpio_init(GPIOA,GPIO_MODE_IN_FLOATING,GPIO_OSPEED_50MHZ,GPIO_PIN_0);

(2)通过查看数据手册,可以看到TIMER1_CH0_ETI,根据前面所讲,是可以支持外部时钟输入的。

TIMER的结构体,初始化定时器参数,设置自动重装值, 分频系数,计数方式等

//ETI
 timer_initpara.prescaler = 1; // 2 分频
 timer_initpara.alignedmode = TIMER_COUNTER_EDGE;
 timer_initpara.counterdirection = TIMER_COUNTER_UP;
 timer_initpara.period = 65535;
 timer_initpara.clockdivision = TIMER_CKDIV_DIV1;
 timer_initpara.repetitioncounter = 0;
 timer_init(TIMER1,&timer_initpara);
timer_enable(TIMER1);

(3)配置TIMER的时钟来源和时钟源处理的配置

timer_input_trigger_source_select(TIMER1,TIMER_SMCFG_TRGSEL_ETIFP);
timer_external_clock_mode1_config(TIMER1, TIMER_EXT_TRI_PSC_OFF, TIMER_ETP_RISING, 0);

(4)使能TIMER

timer_enable(TIMER1);

5.5.TIMER 使用注意事项

TIMER 高级定时器 做定时用的时候(使用到UPDAT中断),在产生中断之后,高级定时器的其他所有的状态标志位会被置位,但是不会置位中断标志位.

本章内容每日持续更新,如有兴趣,请关注收藏

更多GD32 MCU相关咨询:https://www.gd32bbs.com/ 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1942289.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

wsl –install 遇到灾难性故障

windows10 使用wsl 安装Linux系统遇到&#xff1a;灾难性故障 解决办法

VideoAgent: Long-form Video Understanding with Large Language Model as Agent

VideoAgent: Long-form Video Understanding with Large Language Model as Agent 基本信息 博客贡献人 燕青 作者 Xiaohan Wang, Yuhui Zhang, et al. 标签 Large Language Model Agent, Long-form Video Understanding, Vision-Language Foundation Models 摘要 长视…

【Drone】drone编译web端 防墙策略 | 如何在被墙的状态drone顺利编译npm

一、drone编译防墙版本 1、web端drone kind: pipeline type: docker name: ui steps:- name: build_projectimage: node:20-slim depends_on: [clone]volumes:- name: node_modulespath: /drone/src/node_modulescommands:- pwd- du -sh *- npm config set registry https://…

Anaconda下安装配置Jupyter

Anaconda下安装配置Jupyter 1、安装 conda activate my_env #激活虚拟环境 pip install jupyter #安装 jupyter notebook --generate-config #生成配置文件提示配置文件的位置&#xff1a; Writing default config to: /root/.jupyter/jupyter_notebook_config.py检查版本&am…

从PyTorch官方的一篇教程说开去(3.3 - 贪心法)

您的进步和反馈是我最大的动力&#xff0c;小伙伴来个三连呗&#xff01;共勉。 贪心法&#xff0c;可能是大家在处理陌生问题时候&#xff0c;最容易想到的办法了吧&#xff1f; 还记得小时候&#xff0c;国足请了位洋教练发表了一句到现在还被当成段子的话&#xff1a;“如…

用Label Studio,让数据标注变得简单而高效

Label Studio&#xff1a;精准标注&#xff0c;智能模型的起点- 精选真开源&#xff0c;释放新价值。 概览 Label Studio作为数据标注的得力助手&#xff0c;其设计初衷是简化机器学习项目中繁琐的数据准备工作。它提供了一个用户友好的界面&#xff0c;使得即便是非技术用户也…

SpringMVC实现文件上传

导入文件上传相关依赖 <!--文件上传--> <dependency><groupId>commons-fileupload</groupId><artifactId>commons-fileupload</artifactId><version>1.3.1</version> </dependency> <dependency><groupId>…

实现Nginx的反向代理和负载均衡

一、反向代理和负载均衡简介 1.1、反向代理 反向代理(reverse proxy)指:以代理服务器来接受Internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服务器上得到的结果返回给Internet上请求连接的客户端。此时代理服务器对外就表现为一个反向代理服务器。 反向代…

【YOLOv10[基础]】热力图可视化实践① | 支持视频热力图 | 密度热力图 | 论文必备

本文将进行添加YOLOv10版本的热力图可视化功能的实践,支持视频的热力图可视化。 目录 一 热力图可视化实践① 1 代码 2 效果图 在论文中经常可以见到提取的物体特征以热力图的形式展示出来,将特征图以热力图的方式进行可视化在深度学习中有以下的原因: ①强调激活区域 ,…

HarmonyOS Next系列之地图组件(Map Kit)使用(九)

系列文章目录 HarmonyOS Next 系列之省市区弹窗选择器实现&#xff08;一&#xff09; HarmonyOS Next 系列之验证码输入组件实现&#xff08;二&#xff09; HarmonyOS Next 系列之底部标签栏TabBar实现&#xff08;三&#xff09; HarmonyOS Next 系列之HTTP请求封装和Token…

常用的网络爬虫工具推荐

在推荐常用的网络爬虫工具时&#xff0c;我们可以根据工具的易用性、功能强大性、用户口碑以及是否支持多种操作系统等多个维度进行考量。以下是一些常用的网络爬虫工具推荐&#xff1a; 1. 八爪鱼 简介&#xff1a;八爪鱼是一款免费且功能强大的网站爬虫&#xff0c;能够满足…

【详细的springboot自动装载原理】

1.默认提供的核心配置模块 springboot提供了 spring-boot-autoconfigure模块&#xff0c;该模块为springboot自动配置的核心模块&#xff0c;它初始化好了很多我们平时需要的配置类&#xff0c;那么有了这些配置类就能生效了吗&#xff1f;得需要一个东西在启动的时候去把它加…

C++ | Leetcode C++题解之第264题丑数II

题目&#xff1a; 题解&#xff1a; class Solution { public:int nthUglyNumber(int n) {vector<int> dp(n 1);dp[1] 1;int p2 1, p3 1, p5 1;for (int i 2; i < n; i) {int num2 dp[p2] * 2, num3 dp[p3] * 3, num5 dp[p5] * 5;dp[i] min(min(num2, num3…

CTF-Web习题:2019强网杯 UPLOAD

题目链接&#xff1a;2019强网杯 UPLOAD 解题思路 打开靶场如下图所示&#xff0c;是一个注册和登录界面 那就注册登录一下&#xff0c;发现是一个提交头像的页面&#xff1a; 试了一下只有能正确显示的png图片才能提交成功&#xff0c;同时F12拿到cookie&#xff0c;base6…

自己开发软件实现网站抓取m3u8链接

几天前一个同学说想下载一个网站的视频找不到连接&#xff0c;问我有没有什么办法,网站抓取m3u8链接 网页抓取m3u8链接。当时一听觉得应该简单&#xff0c;于是说我抽空看看。然后就分析目标网页&#xff0c;试图从网页源码里找出连接&#xff0c;有的源代码直接有,但是有的没有…

与Bug较量:Codigger之软件项目体检Software Project HealthCheck来帮忙

在软件工程师的世界里&#xff0c;与 Java 小程序中的 Bug 作战是一场永不停歇的战役。每一个隐藏在代码深处的 Bug 都像是一个狡猾的敌人&#xff0c;时刻准备着给我们的项目带来麻烦。 最近&#xff0c;我就陷入了这样一场与 Java 小程序 Bug 的激烈较量中。这个小程序原本应…

【北京迅为】《i.MX8MM嵌入式Linux开发指南》-第三篇 嵌入式Linux驱动开发篇-第三十九章 Linux MISC驱动

i.MX8MM处理器采用了先进的14LPCFinFET工艺&#xff0c;提供更快的速度和更高的电源效率;四核Cortex-A53&#xff0c;单核Cortex-M4&#xff0c;多达五个内核 &#xff0c;主频高达1.8GHz&#xff0c;2G DDR4内存、8G EMMC存储。千兆工业级以太网、MIPI-DSI、USB HOST、WIFI/BT…

爬虫实战:解决代理IP频繁中断的实操建议

当代理IP在爬虫中频繁掉线时&#xff0c;我们先要了解出现问题的可能原因&#xff0c;这不仅限于技术性因素&#xff0c;还涉及操作策略和环境因素。只有在找到具体原因后&#xff0c;才能针对问题类型从源头解决IP掉线问题。 一、问题原因&#xff1a; 1. 代理IP质量问题导致…

数据结构(Java):七大排序算法【详解】

目录 1、排序的概念 1.1 排序 1.2 排序的稳定性 1.3 内部排序&外部排序 1.4 各排序算法总结对比 2、 插入排序 2.1 &#x1f338;直接插入排序 2.2 &#x1f338;希尔排序 3、 选择排序 3.1 &#x1f338;直接选择排序 3.2 直接选择排序优化 3.3 &#x1f338;…

清华大学联合斯坦福大学提出混合注意力机制MoA,大模型解码速率提高6倍

随着大语言模型的规模不断扩大&#xff0c;如何在保持模型性能的同时提高其效率&#xff0c;成为了当前研究的热点问题。最近&#xff0c;清华大学联合斯坦福大学提出一种名为"注意力混合"(Mixture of Attention, MoA)的新方法&#xff0c;用于自动压缩大语言模型。 …