从数据湖到湖仓一体:统一数据架构演进之路

news2025/1/11 12:34:42

文章目录

  • 一、前言
  • 二、什么是湖仓一体?
    • 起源
    • 概述
  • 三、为什么要构建湖仓一体?
    • 1. 成本角度
    • 2. 技术角度
  • 四、湖仓一体实践过程
    • 阶段一:摸索阶段(仓、湖并行建设)
    • 阶段二:发展阶段
      • 方式一、湖上建仓(湖在下、仓在上)
      • 方式二:仓外挂湖(金融领域常见)
    • 阶段三:深化阶段(整合以上两种方式)
  • 五、总结
  • 六、参考资料

一、前言

在阅读本文之前,建议读者先对数据仓库和数据湖有一些基本的了解。这将有助于更好地理解本文内容。您可以参考笔者以下文章:

从数据库到数据仓库:数据仓库导论

从数据仓库到数据湖(上):数据湖导论

从数据仓库到数据湖(下):数据湖领域热门的开源框架

二、什么是湖仓一体?

起源

湖仓一体概念最早是由数据智能独角兽企业Databricks于2020年提出Data Lakehouse概念,其联合创始人兼首席执行官 Ali Ghodsi 说:“从长远来看,所有数据仓库都将被纳入数据湖仓,这不会在一夜之间发生——这些东西会共存一段时间——但这个官方的世界纪录清楚地证明,在价格和性能上,数据湖仓完胜数据仓库。”

img

概述

湖仓一体是一种新的数据管理模式。湖仓一体将数据仓库和数据湖两者之间的差异进行融合,并将数据仓库构建在数据湖,从而有效简化了企业数据的基础架构,提升数据存储弹性和质量的同时还能降低成本,减小数据冗余。

在湖仓一体之前,数据分析经历了数据库、数据仓库和数据湖分析三个时代。

  • 首先是数据库,它是一个最基础的概念,主要负责联机事务处理,也提供基本的数据分析能力。
  • 随着数据量的增长,出现了数据仓库,它存储的是经过清洗、加工以及建模后的高价值的数据,供业务人员进行数据分析。
  • 数据湖的出现,主要是为了去满足企业对原始数据的存储、管理的需求。这里的需求主要包括两部分,首先要有一个低成本的存储,用于存储结构化、半结构化,甚至非结构化的数据;另外,就是希望有一套包括数据处理、数据管理以及数据治理在内的一体化解决方案。

数据仓库解决了数据快速分析的需求,数据湖解决了数据的存储和管理的需求,而湖仓一体要解决的就是如何让数据能够在数据湖和数据仓库之间进行无缝的集成和自由的流转,从而帮助用户直接利用数据仓库的能力来解决数据湖中的数据分析问题,同时又能充分利用数据湖的数据管理能力来提升数据的价值。

注意:严格来说湖仓一体没有跟具体哪个技术绑定

三、为什么要构建湖仓一体?

湖仓一体的出现离不开数据湖和技术的发展,本文将从成本和技术两个方向探讨为何要构建湖仓一体。

1. 成本角度

在企业构建数据湖初期,企业已经拥有了数据仓库,而数据湖作为新兴组件独立部署。在这一阶段,数据仓库和数据湖是并行建设的,但随着时间的推移,它们之间的数据协同性差,形成了数据孤岛。

由于数据仓库和数据湖各自独立建设,企业需要重新购买机器,增加成本。因此,从成本角度看,湖仓一体是必要的。

此外,数据湖适合存储各种类型的数据,其起步成本较低,但随着数据量增加,总拥有成本(TCO)会迅速上升。相反,数据仓库在前期需要进行大量数据处理(如清洗、加工和结构约束),建设成本较高,但后期维护成本相对稳定。

因此,对于既想建立数据湖又想搭建数据仓库的企业来说,这无异于在玩一个成本游戏。

图1:数据湖和数据仓库成本对比

为了更有效地利用数据资源,人们开始思考,能否将数据湖和数据仓库整合起来,减少重复建设,实现数据的流动和共享?

在这里插入图片描述

这些需求推动了数据湖和数据仓库的融合,催生了如今炙手可热的概念:Lake House。Lake House,坊间称之为“湖仓一体”,其架构的核心是实现“湖里”和“仓里”的数据/元数据无缝打通,并且“自由”流动。

湖里的“新鲜”数据可以流到仓里,甚至可以直接被数据仓库使用,而仓里的“不新鲜”数据也可以流到湖里,低成本长久保存,供未来的数据挖掘使用。

图3:Lake House架构示意图

2. 技术角度

在笔者之前关于数据湖的文章中提到,当下的数据湖开源框架均依赖分布式文件系统的存储能力。它们普遍支持一些通用的文件格式来组织和管理数据。正是这种通用的数据格式,为许多计算引擎和数据库提供了接口的便利。

例如,传统的数据仓库 Hive 将数据存储在 HDFS 上,而数据湖 Hudi 也使用 HDFS 存储数据。考虑到它们共享相同的底层存储,为何不将它们整合在一起呢?这就催生了“湖仓一体”的技术概念,当然,这只是原因之一。

随着技术的发展,数据湖和数据仓库的边界正在逐渐模糊,数据湖与外部系统的对接能力也在增强。得益于数据湖技术对底层数据格式的通用性以及对外提供的良好接口,许多 MPP 库(如 ClickHouse、Doris、StarRocks 等)能够方便地对接数据湖。

以 Doris 为例,在其 2.x 版本的官方文档中,专门开设了一章“湖仓一体”来详细介绍这一概念,如下图所示:

在这里插入图片描述

通过这些技术整合,企业能够更有效地管理和利用数据资源,实现数据的流动和共享,进而提升数据驱动决策的能力和效率。

四、湖仓一体实践过程

国内大数据时代湖仓一体实践的发展经历了三个阶段:摸索阶段、发展阶段、深化阶段。

深化阶段尚未达到完全成熟,因为湖仓一体的概念较为新颖,仍在不断演变中,未来可能会有更先进的技术架构出现并取而代之。

阶段一:摸索阶段(仓、湖并行建设)

仓、湖各自独立建设,形成数据孤岛,数据协同性差,如下图:

阶段二:发展阶段

在湖仓一体的发展践阶段,逐渐形成了“湖上建仓”与“仓外挂湖”两种湖仓一体实现方式。

湖上建仓和仓外挂湖虽然出发点不同,但最终湖仓一体的目标一致。

方式一、湖上建仓(湖在下、仓在上)

湖仓一体架构主要是实现“湖里”和“仓里”的数据能够无缝打通,在这个背景下催生出:湖在下,仓在上的立体建设模式,在该架构中,湖仓一体架构主要将数据湖作为中央存储库,将机器学习、数据仓库、日志分析、大数据等技术进行整合,形成一套数据服务环,更好地分析、整合数据,让数据仓库和数据湖中的数据可以自由流动,用户可以更便捷地调取其中的数据,让数据“入湖”、“出湖”更为便捷,如下图:

湖上建仓”与“仓外挂湖”的湖仓一体建设实践比较– 数治网

1、数据湖来承载仓的贴源层和基础层;
2、仓聚焦在共性加工层及集市层;

细节如下图:

在这里插入图片描述

总的来看“湖上建仓”路径本质是在湖的基础上增加仓的能力

方式二:仓外挂湖(金融领域常见)

仓外挂湖是指以 MPP 数据库为数仓基础,使用可插拔架构,通过开放接口对接外部数据湖实现统一存储,在存储底层共享一份数据,计算、存储完全分离(即:数据存储在数据湖中,表的元数据管理和计算则使用MPP库能力),实现从强管理到兼容开放存储和多引擎。代表产品: Doris、AWS Redshift、阿里云 MaxCompute/Hologres 湖仓一体。

这里以Doris2.x版本为例,Doris 通过多源数据目录(Multi-Catalog)功能,支持了包括 Apache Hive、Apache Iceberg、Apache Hudi、Apache Paimon(Incubating)等主流数据湖的连接访问。具体架构如下:

基于 Doris 的湖仓一体架构

总的来看,“仓外挂湖”路径本质是在仓的基础上增加湖的多类型存储等能力

阶段三:深化阶段(整合以上两种方式)

下图展示了火山引擎的湖仓一体架构,涵盖从数据存储到计算处理的各个层级:

架构图

开发应用层

  • 包含第三方生态产品和内部应用(如 DataLeap、DataWind)。
  • 通过 SDK 和 JDBC 与计算层交互。

湖仓计算层

  • 计算引擎:支持 Spark SQL、Presto、PySpark 等多种计算方式。
  • 执行加速层:使用(C++ 向量化执行引擎)(例如Doris、ClickHouse等MPP库) 提高计算性能。
  • 资源调度:提供海量资源池和弹性伸缩能力。

湖仓存储层[湖仓一体]

  • 存储格式:支持 Hudi、Parquet、ORC 和 Avro 等格式。
  • 数据存储:结合内置文件系统和外置存储(如 TOS、RDS、Kafka)。

数据管理

  • 统一元数据管理:确保一致的数据视图。
  • 多租户支持:实现数据隔离和管理。
  • 安全体系:保障数据安全。

五、总结

本文详细探讨了从数据湖到湖仓一体的演进过程及其在现代数据管理中的重要性。湖仓一体由Databricks于2020年提出,旨在融合数据湖和数据仓库的优势,通过无缝集成,实现数据存储和管理的统一架构。

湖仓一体的出现主要是为了降低成本和解决数据孤岛问题。传统的数据湖和数据仓库各自独立建设,导致重复投资和数据管理上的困难,而湖仓一体通过简化基础架构、提升数据存储弹性和质量,有效减少了这些问题。

技术上,湖仓一体依赖于分布式文件系统和通用数据格式,增强了数据湖与外部系统的对接能力。实践中,湖仓一体在国内的发展经历了摸索、发展和深化三个阶段,形成了“湖上建仓”和“仓外挂湖”两种实现方式,各自通过不同的路径实现了数据的流动和共享。

总之,湖仓一体在提升数据管理效率和降低成本方面具有显著优势,虽然尚未完全成熟,但其发展潜力巨大,将为企业的数据管理和决策提供新的解决方案。

六、参考资料

  • Doris湖仓一体概述
  • 从数据库到数据仓库:数据仓库导论
  • 从数据仓库到数据湖(上):数据湖导论
  • 从数据仓库到数据湖(下):数据湖领域热门的开源框架
  • 数据库、数据湖、数据仓库、湖仓一体、智能湖仓,分别都是什么鬼?

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1938633.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

一种优雅的方法获取PyInstaller打包Python程序的资源路径和目录路径

1、需求分析 运行Python程序的时候需要获取的资源有2种: 一种是固定的资源文件,你希望启动程序的时候可以调用的,比如数据库文件和图片资源文件;另一种是用于存储历史记录的文件,你希望每次打开都会改变其中的内容&am…

【机器学习】智能驱动未来:机器学习在能源效率提升与环境管理中的创新应用

📝个人主页🌹:Eternity._ 🌹🌹期待您的关注 🌹🌹 ❀目录 🔍1. 引言📒2. 机器学习能源环境领域的应用潜力🌄能源效率提升🏞️环境管理⛰️具体案例…

动漫风格动漫404网站维护HTML源码

源码介绍 动漫风格动漫404网站维护HTML源码,源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果,也可以上传到服务器里面 效果预览 源码下载 动漫风格动漫404网站维护HTML源码

收银系统源码-千呼新零售收银视频介绍

千呼新零售2.0系统是零售行业连锁店一体化收银系统,包括线下收银线上商城连锁店管理ERP管理商品管理供应商管理会员营销等功能为一体,线上线下数据全部打通。 适用于商超、便利店、水果、生鲜、母婴、服装、零食、百货、宠物等连锁店使用。 详细介绍请…

XMl基本操作

引言 使⽤Mybatis的注解⽅式,主要是来完成⼀些简单的增删改查功能. 如果需要实现复杂的SQL功能,建议使⽤XML来配置映射语句,也就是将SQL语句写在XML配置⽂件中. 之前,我们学习了,用注解的方式来实现MyBatis 接下来我们…

传输层和网络层的关系,ip协议+ip地址+ip报头字段介绍(4位TOP字段,8位生存时间(ttl)),ip地址和端口号的作用

目录 传输层和网络层的关系 引入 介绍 ip协议 介绍 ip地址 引入 数据传递过程 举例(ip地址的作用) ip报头 格式 4位版本号 ip地址不足的问题 8位服务类型 4位TOP(type of service)字段 最小延时 最大吞吐量 4位首部长度 16位总长度 8位协议号 首部校验和…

科研绘图系列:R语言分割小提琴图(Split-violin)

介绍 分割小提琴图(Split-violin plot)是一种数据可视化工具,它结合了小提琴图(violin plot)和箱线图(box plot)的特点。小提琴图是一种展示数据分布的图形,它通过在箱线图的两侧添加曲线来表示数据的密度分布,曲线的宽度表示数据点的密度。而分割小提琴图则是将小提…

LeNet实验 四分类 与 四分类变为多个二分类

目录 1. 划分二分类 2. 训练独立的二分类模型 3. 二分类预测结果代码 4. 二分类预测结果 5 改进训练模型 6 优化后 预测结果代码 7 优化后预测结果 8 训练四分类模型 9 预测结果代码 10 四分类结果识别 1. 划分二分类 可以根据不同的类别进行多个划分,以…

【数据分享】2013-2022年我国省市县三级的逐月SO2数据(excel\shp格式\免费获取)

空气质量数据是在我们日常研究中经常使用的数据!之前我们给大家分享了2000——2022年的省市县三级的逐月PM2.5数据和2013-2022年的省市县三级的逐月CO数据(均可查看之前的文章获悉详情)! 本次我们分享的是我国2013——2022年的省…

Langchain-Chatchat-Ubuntu服务器本地安装部署笔记

Langchain-Chatchat(原Langchain-ChatGLM)基于 Langchain 与 ChatGLM 等语言模型的本地知识库问答 | Langchain-Chatchat (formerly langchain-ChatGLM), local knowledge based LLM (like ChatGLM) QA app with langchain。 开源网址:https:…

基于NeRF的路面重建算法——RoME / EMIE-MAP / RoGS

基于NeRF的路面重建算法——RoME / EMIE-MAP / RoGS 1. RoMe1.1 Mesh Initialization / Waypoint Sampling1.2 Optimization1.3 Experiments 2. EMIE-MAP2.1 Road Surface Representation based on Explicit mesh and Implicit Encoding2.2 Optimizing Strategies2.3 Experimen…

基于面向对象和递归的拦截器设计模式

1 定义 拦截器模式(Interceptor Pattern),是指提供一种通用的扩展机制,可以在业务操作前后提供一些切面的(Cross-Cutting)的操作。这些切面操作通常是和业务无关的,比如日志记录、性能统计、安…

SciPy版本与Python和NumPy各个版本的兼容性

但是现在我用Scipy1.13.1,Python3.10,NumPy2.0.0,使用Scipy时会报错,将NumPy 版本降低为1.26.4以后,就没有报错了。

C++ | Leetcode C++题解之第268题丢失的数字

题目&#xff1a; 题解&#xff1a; class Solution { public:int missingNumber(vector<int>& nums) {int n nums.size();int total n * (n 1) / 2;int arrSum 0;for (int i 0; i < n; i) {arrSum nums[i];}return total - arrSum;} };

【MySQL】一些业务场景常见的查询,比如实现多表字段同步,递归查询等

目录 快速加注释多表关联查询更新多个字段循环查询子级方法1&#xff1a;递归查询方法2&#xff1a;循环查询 快速加注释 使用ALTER TABLE语句可以修改表结构&#xff0c;包括添加注释。以下是添加注释的语法&#xff1a; ALTER TABLE 表名 MODIFY COLUMN 列名 列类型 COMMEN…

【开源库学习】libodb库学习(三)

4 查询数据库 如果我们不知道我们正在寻找的对象的标识符&#xff0c;我们可以使用查询在数据库中搜索符合特定条件的对象。ODB查询功能是可选的&#xff0c;我们需要使用--generate-query ODB编译器选项显式请求生成必要的数据库支持代码。 ODB提供了一个灵活的查询API&#x…

LeetCode 热题 HOT 100 (001/100)【宇宙最简单版】

【链表】 No. 0160 相交链表 【简单】&#x1f449;力扣对应题目指路 希望对你有帮助呀&#xff01;&#xff01;&#x1f49c;&#x1f49c; 如有更好理解的思路&#xff0c;欢迎大家留言补充 ~ 一起加油叭 &#x1f4a6; ⭐题目描述&#xff1a;两个单链表的头节点 headA 和 …

51单片机嵌入式开发:13、STC89C52RC 之 RS232与电脑通讯

STC89C52RC 之 RS232与电脑通讯 第十三节课&#xff0c;RS232与电脑通讯1 概述2 Uart介绍2.1 概述2.2 STC89C52UART介绍2.3 STC89C52 UART寄存器介绍2.4 STC89C52 UART操作 3 C51 UART总结 第十三节课&#xff0c;RS232与电脑通讯 1 概述 RS232&#xff08;Recommended Stand…

huawei USG6001v1学习----NAT和智能选路

目录 1.NAT的分类 2.智能选路 1.就近选路 2.策略路由 3.智能选路 NAT:&#xff08;Network Address Translation&#xff0c;网络地址转换&#xff09; 指网络地址转换&#xff0c;1994年提出的。NAT是用于在本地网络中使用私有地址&#xff0c;在连接互联网时转而使用全局…

Java | Leetcode Java题解之第263题丑数

题目&#xff1a; 题解&#xff1a; class Solution {public boolean isUgly(int n) {if (n < 0) {return false;}int[] factors {2, 3, 5};for (int factor : factors) {while (n % factor 0) {n / factor;}}return n 1;} }