分类预测 | Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积支持向量机分类预测

news2024/11/27 5:33:48

分类预测 | Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积支持向量机分类预测

目录

    • 分类预测 | Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积支持向量机分类预测
      • 分类效果
      • 基本描述
      • 程序设计
      • 参考资料

分类效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本描述

1.Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积支持向量机分类预测(完整源码和数据)
2.优化参数为:学习率,批量处理大小,正则化参数。
3.图很多,包括分类效果图,混淆矩阵图。
4.附赠案例数据可直接运行main一键出图~
注意程序和数据放在一个文件夹,运行环境为Matlab2020及以上。
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。
6.输入多个特征,分四类。

程序设计

  • 完整程序和数据获取方式资源处下载Matlab实现WOA-CNN-SVM鲸鱼算法优化卷积支持向量机分类预测
%%  优化算法参数设置
SearchAgents_no = 8;                   % 数量
Max_iteration = 5;                    % 最大迭代次数

%% 建立模型
lgraph = layerGraph();                                                   % 建立空白网络结构
tempLayers = [
    sequenceInputLayer([num_dim, 1, 1], "Name", "sequence")              % 建立输入层,输入数据结构为[num_dim, 1, 1]
    sequenceFoldingLayer("Name", "seqfold")];                            % 建立序列折叠层
lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中
tempLayers = [
    convolution2dLayer([3, 1], 16, "Name", "conv_1", "Padding", "same")  % 建立卷积层,卷积核大小[3, 1]16个特征图
    reluLayer("Name", "relu_1")                                          % Relu 激活层

lgraph = addLayers(lgraph, tempLayers);                                  % 将上述网络结构加入空白结构中

tempLayers = [
    sequenceUnfoldingLayer("Name", "sequnfold")                          softmaxLayer("Name", "softmax")                                  % softmax激活层
    classificationLayer("Name", "classification")];                  % 分类层
lgraph = addLayers(lgraph, tempLayers);                              % 将上述网络结构加入空白结构中
lgraph = connectLayers(lgraph, "seqfold/out", "conv_1");             % 折叠层输出 连接 卷积层输入
lgraph = connectLayers(lgraph, "seqfold/miniBatchSize", "sequnfold/miniBatchSize"); 
                                                                     % 折叠层输出连接反折叠层输入
lgraph = connectLayers(lgraph, "relu_2", "sequnfold/in");            % 激活层输出 连接 反折叠层输入

%% 参数设置
options = trainingOptions('adam', ...     % Adam 梯度下降算法
    'MaxEpochs', 500,...                 % 最大训练次数 
    'InitialLearnRate', best_lr,...          % 初始学习率为0.001
    'L2Regularization', best_l2,...         % L2正则化参数
    'LearnRateSchedule', 'piecewise',...  % 学习率下降
    'LearnRateDropFactor', 0.1,...        % 学习率下降因子 0.1
    'LearnRateDropPeriod', 400,...        % 经过训练后 学习率为 0.001*0.1
    'Shuffle', 'every-epoch',...          % 每次训练打乱数据集
    'ValidationPatience', Inf,...         % 关闭验证
    'Plots', 'training-progress',...      % 画出曲线
    'Verbose', false);

%% 训练
net = trainNetwork(p_train, t_train, lgraph, options);

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129036772?spm=1001.2014.3001.5502
[2] https://blog.csdn.net/kjm13182345320/article/details/128690229

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1938330.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前端基础之JavaScript学习——函数的使用

大家好我是来自CSDN的前端寄术区博主PleaSure乐事,今天我们继续有关JavaScript的学习,使用的编译器为vscode,浏览器为谷歌浏览器。 函数的声明与使用 声明 在JavaScript当中函数的声明和其他语言类似,使用如下格式即可声明&…

SpringBoot+Session+redis实现分布式登录

SpringBootSessionRedis实现分布式登录功能实现 文章目录 目录 文章目录 前言 一、引库 二、修改配置文件 三、使用 四、解决乱码问题 1.引库 2.配置redis序列化 3.配置Session-Redis序列化 前言 这里简单介绍一下,如果你想多台机器部署你的项目的话,在…

Python爬虫速成之路(6):Selenium的使用

hello hello~ ,这里是绝命Coding——老白~💖💖 ,欢迎大家点赞🥳🥳关注💥💥收藏🌹🌹🌹 💥个人主页:绝命Coding-CSDN博客 &a…

Excel的操作

Excel的操作 一、Excel的作用 Excel是一款功能强大的电子表格软件,主要用于数据处理和分析。 二、Excel的基础操作 新建文档 一般情况下,就在桌面空白处,点击鼠标右键,即可新建 三、页面布局 1、快速访问工具栏 主要包含&am…

前端特效动画魔法书:文字渐入效果实现,可做引导页面

前端特效动画魔法书:文字渐入效果实现,可做引导页面 简介 在网页设计的世界中,动画是吸引用户眼球的魔法。Anime.js,一个轻量级且功能强大的JavaScript动画库,是实现这一魔法的完美工具。本文将作为你的技术文档&…

深入理解PHP基础【代码审计实战指南】

文章目录 基础语法单双引号的区别前后端分离数据类型PHP常量函数var_dump函数count函数print_r函数**readfile()函数****file_get_contents()函数****file_put_contents()函数**header函数fopen函数fread 函数rename函数copy()函数…

什么是单例模式,有哪些应用?

目录 一、定义 二、应用场景 三、6种实现方式 1、懒汉式,线程不安全。 2、懒汉式,线程安全 3、双检锁/双重校验锁(DCL,即 double-checked locking) 4、静态内部类方式-------只适用于静态域 5、饿汉式 6、枚举…

MATLAB函数介绍——plotm

简述 matlab中,plotm和不带“m”的plot意义相似,都是绘制二维图像的。只是加了m以后,在绘制时将图像投影到了世界地图坐标系上面进行显示。 plotm的第一个输入量是纬度,第二个输入量是经度,单位都是弧度。 例程 官方…

各种复现,保证质量

代码复现,文献复现,模型复现,算法复现,文章复现,创新点等等,python/matlab/c语言/r语言均可,保证高质量完成,可接急单,不成功不收费!

docker应用:搭建云手机

简介:近来慵懒,身体懈怠良多,思来想去随手看点小攻略以宽慰不懈怠的心。云手机Cloudphone,就是将云计算技术运用于网络终端服务,通过云服务器实现云服务的手机。其实就是深度结合了网络服务的智能手机,这类…

基于多线程延迟排序的睡眠排序算法的创新与改进

基于多线程延迟排序的睡眠排序算法的创新与改进 摘要 本文在传统睡眠排序算法的基础上,提出了一种改进方案,旨在优化处理负数和大规模数据集的性能。通过引入线程池管理和数据分段排序技术,改进后的算法在处理大数据集和包含负数的数据集时…

【11】微服务链路追踪SkyWalking

1、skywalking是什么 1.1 链路追踪介绍 对于一个大型的几十个、几百个微服务构成的微服务架构系统,通常会遇到下面一些问题,比如: 如何串联整个调用链路,快速定位问题?如何缕清各个微服务之间的依赖关系?…

【web】-flask-简单的计算题(不简单)

打开页面是这样的 初步思路,打开F12,查看头,都发现了这个表达式的base64加密字符串。编写脚本提交答案,发现不对; 无奈点开source发现源代码,是flask,初始化表达式,获取提交的表达式&#xff0…

C语言 | Leetcode C语言题解之第260题只出现一次的数字III

题目&#xff1a; 题解&#xff1a; int* singleNumber(int* nums, int numsSize, int* returnSize) {int xorsum 0;for (int i 0; i < numsSize; i) {xorsum ^ nums[i];}// 防止溢出int lsb (xorsum INT_MIN ? xorsum : xorsum & (-xorsum));int type1 0, type2…

虚拟机OP的LAN网口设置

问题&#xff1a;unraid通过虚拟机安装OP&#xff0c;然而一个网口连接路由器&#xff0c;总是无法为其他设备提供DHCP&#xff0c;导致无法使用。 一、虚拟机OP配置 二、OP内部配置 对于Lan网口&#xff0c;启用强制&#xff0c;这样可以防止OP被网口接的路由器产生冲突 三、…

安全防御:过滤技术

目录 一、URL过滤 URL过滤的方式 二、HTTP与HTTPS HTTP协议获取URL的方式 HTTP协议做控制管理的流程 HTTPS 1&#xff0c;配置SSL的解密功能 2&#xff0c;直接针对加密流量进行过滤 需求&#xff1a; 三、DNS过滤 四、内容过滤 文件过滤技术 文件过滤技术的处理流…

详解SVN与Git相比存在的不足

原文全文详见个人博客&#xff1a; 详解SVN与Git相比存在的不足截至目前&#xff0c;我们已既从整理梳理的SVN和Git在设计理念上的差异&#xff0c;也重点对二者的存储原理和分支管理理念的差异进行深入分析。这些差异也直接造成了SVN和Git在分支合并、冲突解决、历史记录管理…

Git分支管理基本原理

原文全文详见个人博客&#xff1a; Git分支管理基本原理上文已讨论过svn分支管理的基本原理&#xff0c;本文将继续探讨Git分支管理的基本原理&#xff0c;以便后续进行进一步的理解和对比&#xff1a;https://www.coderli.com/git-branch-method/【Java学习交流(982860385)】…

Git仓库拆分和Merge

1. 问题背景 我们原先有一个项目叫open-api&#xff0c;后来想要做租户独立发展&#xff0c;每个租户独立成一个项目&#xff0c;比如租户akc独立部署一个akc-open-api&#xff0c;租户yhd独立部署一个yhd-open-api&#xff0c;其中大部分代码是相同的&#xff0c;少量租户定制…

鸿蒙开发入门——声明式UI开发入门简介(1)

声明式UI特点 与常规命令式开发的区别在于主导者不同&#xff0c;命令式开发为开发者告诉计算机需要做什么&#xff0c;而声明式开发为开发者告诉计算机自己想要什么结果&#xff0c;怎么做交给预先的程序和算法&#xff0c;让计算机自行推断 声明式描述 开发者只需描述在界⾯…