一、类的默认函数
默认成员函数就是用户没有显式实现,编译器会自动生成的成员函数称为默认成员函数。
#include<iostream>
using namespace std;
class Date
{
public:
Date()
{
_year = 1;
_month = 1;
_day = 1;
cout << _year << "/" << _month << "/" << _day << endl;
}
~Date()
{
_year = 0;
_month = 0;
_day = 0;
cout << _year << "/" << _month << "/" << _day << endl;
}
private:
int _year;
int _month;
int _day;
};
int main()
{
Date d1;
return 0;
}
自动调用:
⼀个类,我们不写的情况下编译器会默认生成以下6个默认成员函数,需要注意的是这6个中最重要的是前4个,最
后两个取地址重载不重要,我们稍微了解⼀下即可。默认成员函数很重要,也比较较复杂,我们要从两
个方面去学习:
• 第⼀:我们不写时,编译器默认生成的函数行为是什么,是否满足我们的需求。
• 第⼆:编译器默认生成的函数不满足我们的需求,我们需要自己实现,那么如何自己实现?
二、构造函数
构造函数是特殊的成员函数,需要注意的是,构造函数虽然名称叫构造,但是构造函数的主要任务并
不是开空间创建对象(我们常使用的局部对象是栈帧创建时,空间就开好了),而是对象实例化时初始化
对象。构造函数的本质是要替代我们以前Stack和Date类中写的Init函数的功能,构造函数自动调用的
特点就完美的替代的了Init。
构造函数的特点:
-
函数名与类名相同。
-
无返回值。 (返回值啥都不需要给,也不需要写void,不要纠结,C++规定如此)
-
对象实例化时系统会自动调用对应的构造函数。
-
构造函数可以重载。
-
如果类中没有显式定义构造函数,则C++编译器会自动生成⼀个无参的默认构造函数,⼀旦用户显
式定义编译器将不再生成。
- 无参构造函数、全缺省构造函数、我们不写构造时编译器默认生成的构造函数,都叫做默认构造函
**数。但是这三个函数有且只有一个存在,不能同时存在。**无参构造函数和全缺省构造函数虽然构成
函数重载,但是调用时会存在歧义。要注意很多人会认为默认构造函数是编译器默认生成那个叫
默认构造,实际上无参构造函数、全缺省构造函数也是默认构造,总结⼀下就是不传实参就可以调
用的构造就叫默认构造。
#include<iostream>
using namespace std;
class Date
{
public:
// 1.⽆参构造函数
Date()
{
_year = 1;
_month = 1;
_day = 1;
}
// 2.带参构造函数
Date(int year, int month, int day)
{
_year = year;
_month = month;
_day = day;
}
// 3.全缺省构造函数
/*Date(int year = 1, int month = 1, int day = 1)
{
_year = year;
_month = month;
_day = day;
}*/
void Print()
{
cout << _year << "/" << _month << "/" << _day << endl;
}
private:
int _year;
int _month;
int _day;
};
int main()
{
// 如果留下三个构造中的第⼆个带参构造,第⼀个和第三个注释掉
// 编译报错:error C2512: “Date”: 没有合适的默认构造函数可⽤
Date d1; // 调⽤默认构造函数
Date d2(2025, 1, 1); // 调⽤带参的构造函数
// 注意:如果通过⽆参构造函数创建对象时,对象后⾯不⽤跟括号,否则编译器⽆法区分这⾥是函数声明还是实例化对象
// warning C4930: “Date d3(void)”: 未调⽤原型函数(是否是有意⽤变量定义的?)
Date d3();
d1.Print();
d2.Print();
return 0;
}
- 我们不写,编译器默认生成的构造,对内置类型成员变量的初始化没有要求,也就是说是是否初始化是不确定的,看编译器。对于自定义类型成员变量,要求调用这个成员变量的默认构造函数初始化。如果这个成员变量,没有默认构造函数,那么就会报错,我们要初始化这个成员变量,需要用初始化列表才能解决。
#include<iostream>
using namespace std;
typedef int STDataType;
class Stack
{
public:
Stack(int n = 4)
{
_a = (STDataType*)malloc(sizeof(STDataType) * n);
if (nullptr == _a)
{
perror("malloc申请空间失败");
return;
}
_capacity = n;
_top = 0;
}
private:
STDataType * _a;
size_t _capacity;
size_t _top;
};
// 两个Stack实现队列
class MyQueue
{
public:
//编译器默认⽣成MyQueue的构造函数调⽤了Stack的构造,完成了两个成员的初始化
private:
Stack pushst;
Stack popst;
};
int main()
{
MyQueue mq;
return 0;
}
说明:C++把类型分成内置类型(基本类型)和自定义类型。内置类型就是语言提供的原生数据类型,
如:int/char/double/指针等,自定义类型就是我们使用class/struct等关键字自己定义的类型。
类构造函数的情况分类:
三、析构函数
析构函数与构造函数功能相反,析构函数不是完成对对象本身的销毁,比如局部对象是存在栈帧的,函数结束栈帧销毁,他就释放了,不需要我们管,C++规定对象在销毁时会自动调用析构函数,完成对象中资源的清理释放工作。析构函数的功能类比我们之前Stack实现的Destroy功能,而像Date没有Destroy,其实就是没有资源需要释放,所以严格说Date是不需要析构函数的。
析构函数特点:
-
析构函数名是在类名前加上字符 ~。
-
五参数无返回值。
-
⼀个类只能有⼀个析构函数。若未显式定义,系统会自动生成默认的析构函数。
-
对象生命周期结束时,系统会自动调用析构函数。
-
跟构造函数类似,我们不写编译器自动生成的析构函数对内置类型成员不做处理,自定类型成员会调用他的析构函数。
-
还需要注意的是我们无论写不写显示的析构函数,对于自定义类型成员也会调用他的析构,也就是说自定义类
型成员无论什么情况都会自动调用其析构函数。
#include<iostream>
using namespace std;
typedef int STDataType;
class Stack
{
public:
Stack(int n = 4)
{
_a = (STDataType*)malloc(sizeof(STDataType) * n);
if (nullptr == _a)
{
perror("malloc申请空间失败");
return;
}
_capacity = n;
_top = 0;
}
~Stack()
{
free(_a);
_a = nullptr;
_capacity = 0;
_top = 0;
cout << "~Stack()" << endl;
}
private:
STDataType * _a;
size_t _capacity;
size_t _top;
};
// 两个Stack实现队列
class MyQueue
{
public:
//编译器默认⽣成MyQueue的析构函数调⽤了Stack的析构,释放的Stack内部的资源
// 显⽰写析构,也会⾃动调⽤Stack的析构
~MyQueue()
{
cout << "~MyQueue" << endl;
}
private:
Stack pushst;
Stack popst;
};
int main()
{
Stack st;
MyQueue mq;
return 0;
}
7.如果类中没有申请资源时,析构函数可以不写,直接使用编译器生成的默认析构函数,如Date;如
果自定义类型且他的析构函数存在就可以用系统默认的析构函数,也就不需要显示写析构,如MyQueue;
但是有资源申请时,一定要自己写析构,否则会造成资源泄漏,如Stack。
- ⼀个局部域的多个对象,C++规定后定义的先析构。
四、拷贝构造函数
如果⼀个构造函数的第⼀个参数是自身类类型的引用,且任何额外的参数都有默认值,则此构造函数
也叫做拷贝构造函数,也就是说拷贝构造是⼀个特殊的构造函数。
拷贝构造的特点:
-
拷贝构造函数是构造函数的⼀个重载。
-
拷贝构造函数的参数第一个必须是类类型对象的引用,使用传值方式编译器直接报错,因为语
法逻辑上会引发无穷递归调用。(因为这个时候我们把构造函数写成了传值调用的形式,传值传参调
用时也是调用传值调用的形式)
-
C++规定自定义类型对象进行拷贝行为必须调用拷贝构造,所以这里自定义类型传值传参和传值返回都会调用拷贝构造完成。
-
若未显式定义拷贝构造,编译器会生成自动生成拷贝构造函数。自动生成的拷贝构造对内置类型成员变量会完成值拷贝/浅拷贝(⼀个字节⼀个字节的拷贝),对自定义类型成员变量会调用他的拷贝构造。
-
像Date这样的类成员变量全是内置类型且没有指向什么资源,编译器自动生成的拷贝构造就可以完
成需要的拷贝,所以不需要我们显示实现拷贝构造。像Stack这样的类,虽然也都是内置类型,但
是_a指向了资源,编译器自动生成的拷贝构造完成的值拷贝/浅拷贝不符合我们的需求,所以需要
我们自己实现深拷贝(对指向的资源也进行拷贝)。像MyQueue这样的类型内部主要是自定义类型
Stack成员,编译器自动生成的拷贝构造会调用Stack的拷贝构造,也不需要我们显示实现
**MyQueue的拷贝构造。**这里还有⼀个小技巧,如果⼀个类显示实现了析构并释放资源,那么他就
需要显示写拷贝构造,否则就不需要。
#include<iostream>
using namespace std;
class Date
{
public:
Date(int year = 1, int month = 1, int day = 1)
{
_year = year;
_month = month;
_day = day;
}
// 编译报错:error C2652: “Date”: ⾮法的复制构造函数: 第⼀个参数不应是“Date”
//Date(Date d)
Date(const Date& d)
{
_year = d._year;
_month = d._month;
_day = d._day;
}
/*Date(Date* d)
{
_year = d->_year;
_month = d->_month;
_day = d->_day;
}*/
void Print()
{
cout << _year << "-" << _month << "-" << _day << endl;
}
private:
int _year;
int _month;
int _day;
};
void Func1(Date d)
{
cout << &d << endl;
d.Print();
}
// Date Func2()
int main()
{
Date d1(2024, 7, 5);
Date d2(d1);
// 也可以这样写,这⾥也是拷⻉构造
Date d4 = d1;
return 0;
}
#include<iostream>
using namespace std;
class Date
{
public:
Date(int year = 1, int month = 1, int day = 1)
{
_year = year;
_month = month;
_day = day;
}
// 编译报错:error C2652: “Date”: ⾮法的复制构造函数: 第⼀个参数不应是“Date”
//Date(Date d)
Date(const Date& d)
{
_year = d._year;
_month = d._month;
_day = d._day;
}
/*Date(Date* d)
{
_year = d->_year;
_month = d->_month;
_day = d->_day;
}*/
void Print()
{
cout << _year << "-" << _month << "-" << _day << endl;
}
private:
int _year;
int _month;
int _day;
};
void Func1(Date d)
{
cout << &d << endl;
d.Print();
}
// Date Func2()
int main()
{
Date d1(2024, 7, 5);
// 这⾥可以完成拷⻉,但是不是拷⻉构造,只是⼀个普通的构造
Date d3(&d1);
//这样写才是拷⻉构造,通过同类型的对象初始化构造,⽽不是指针
Date d3(d1);
// 也可以这样写,这⾥也是拷⻉构造
Date d4 = d1;
return 0;
}
#include<iostream>
using namespace std;
typedef int STDataType;
class Stack
{
public:
Stack(int n = 4)
{
_a = (STDataType*)malloc(sizeof(STDataType) * n);
if (nullptr == _a)
{
perror("malloc申请空间失败");
return;
}
_capacity = n;
_top = 0;
}
~Stack()
{
free(_a);
_a = nullptr;
_capacity = 0;
_top = 0;
cout << "~Stack()" << endl;
}
Stack(const Stack& st)
{
cout << "Stack(const Stack& st)" << endl;
// 需要对_a指向资源创建同样大的资源再拷贝值
_a = (STDataType*)malloc(sizeof(STDataType) * st._capacity);
if (nullptr == _a)
{
perror("malloc申请空间失败!!!");
return;
}
memcpy(_a, st._a, sizeof(STDataType) * st._top);
_top = st._top;
_capacity = st._capacity;
}
private:
STDataType * _a;
size_t _capacity;
size_t _top;
};
int main()
{
Stack st;
Stack al = st;//这么写会报错,因为两个栈指向一块空间,析构时会析构两次导致报错。//必须用自己写的拷贝构造函数
return 0;
}
6.传值返回会产生⼀个临时对象调用拷贝构造,传值引⽤返回,返回的是返回对象的别名(引用),没有产生拷贝。但是如果返回对象是⼀个当前函数局部域的局部对象,函数结束就销毁了,那么使用引用返回是有问题的,这时的引用相当于⼀个野引用,类似⼀个野指针⼀样。传引用返回可以减少拷贝,但是⼀定要确保返回对象,在当前函数结束后还在,才能用引用返回。
五、赋值运算符重载
1、运算符重载
• 当运算符被用于类类型的对象时,C++语言允许我们通过运算符重载的形式指定新的含义。C++规
定类类型对象使用运算符时,必须转换成调用对应运算符重载,若没有对应的运算符重载,则会编
译报错。
• 运算符重载是具有特名字的函数,他的名字是由operator和后面要定义的运算符共同构成。和其他
函数⼀样,它也具有其返回类型和参数列表以及函数体。
• 重载运算符函数的参数个数和该运算符作用的运算对象数量⼀样多。⼀元运算符有⼀个参数,⼆元
运算符有两个参数,⼆元运算符的左侧运算对象传给第⼀个参数,右侧运算对象传给第⼆个参数。
• 如果⼀个重载运算符函数是成员函数,则它的第⼀个运算对象默认传给隐式的this指针,因此运算
符重载作为成员函数时,参数比运算对象少⼀个。
• 运算符重载以后,其优先级和结合性与对应的内置类型运算符保持⼀致。
• 不能通过连接语法中没有的符号来创建新的操作符:比如operator@。
• *. :: sizeof ?: . **以上5个运算符不能重载。
•操作符至少有⼀个类类型参数,不能通过运算符重载改变内置类型对象的含义,如: int
operator+(int x, int y)
• ⼀个类需要重载哪些运算符,是看哪些运算符重载后有意义,比如Date类重载operator-就有意
义,但是重载operator+就没有意义。• 重载++运算符时,有前置++和后置++,运算符重载函数名都是operator++,无法很好的区分。C++规定,后置++重载时,增加⼀个int形参,跟前置++构成函数重载,方便区分。• 重载<<和>>时,需要重载为全局函数,因为重载为成员函数,this指针默认抢占了第⼀个形参位置,第⼀个形参位置是左侧运算对象,调⽤时就变成了 对象<<cout,不符合使⽤习惯和可读性。重载为全局函数把ostream/istream放到第⼀个形参位置就可以了,第⼆个形参位置当类类型对象。
class Date
{
public:
Date(int year = 1, int month = 1, int day = 1)
{
_year = year;
_month = month;
_day = day;
}
Date(const Date& d)
{
_year = d._year;
_month = d._month;
_day = d._day;
}
void Print()
{
cout << _year << "-" << _month << "-" << _day << endl;
}
bool operator==( const Date& d2)
{
return _year == d2._year
&& _month == d2._month
&& _day == d2._day;
}
Date& operator++()
{
cout << "前置++" << endl;
//...
return *this;
}
Date operator++(int)
{
Date tmp;
cout << "后置++" << endl;
return tmp;
}
private:
int _year;
int _month;
int _day;
};
// 重载为全局的⾯临对象访问私有成员变量的问题
// 有⼏种⽅法可以解决:
// 1、成员放公有
// 2、Date提供getxxx函数
// 3、友元函数
// 4、重载为成员函数
bool operator==(const Date & d1, const Date & d2)
{
return d1._year == d2._year
&& d1._month == d2._month
&& d1._day == d2._day;
}
int main()
{
Date d1(2024, 7, 5);
Date d2(2024, 7, 6);
// 运算符重载函数可以显⽰调⽤
operator==(d1, d2);
// 编译器会转换成 operator==(d1, d2);
d1 == d2;
// 编译器会转换成 d1.operator++();
++d1;
// 编译器会转换成 d1.operator++(0);
d1++;
return 0;
}
2、赋值运算符重载
赋值运算符重载是⼀个默认成员函数,用于完成两个已经存在的对象直接的拷贝赋值,这里要注意跟拷贝构造区分,拷贝构造用于⼀个对象拷贝初始化给另⼀个要创建的对象。
赋值运算符重载的特点:
-
赋值运算符重载是⼀个运算符重载,规定必须重载为成员函数。赋值运算重载的参数建议写成const 当前类类型引用,否则会传值传参会有拷贝。
-
有返回值,且建议写成当前类类型引用,引用返回可以提⾼效率,有返回值目的是为了支持连续赋值场景。
Date& operator=(const Date& d)
{
// 不要检查⾃⼰给⾃⼰赋值的情况
if (this != &d)
{
_year = d._year;
_month = d._month;
_day = d._day;
}
// d1 = d2表达式的返回对象应该为d1,也就是*this
return *this;
}
-
没有显式实现时,编译器会自动生成⼀个默认赋值运算符重载,默认赋值运算符重载行为跟默认构造函数类似,对内置类型成员变量会完成值拷贝/浅拷贝(⼀个字节⼀个字节的拷贝),对自定义类型成员变量会调用他的拷贝构造。
-
**像Date这样的类成员变量全是内置类型且没有指向什么资源,编译器自动生成的赋值运算符重载就可以完成需要的拷贝,所以不需要我们显示实现赋值运算符重载。像Stack这样的类,虽然也都是内置类型,但是_a指向了资源,编译器自动生成的赋值运算符重载完成的值拷贝/浅拷贝不符合我们的需求,所以需要我们自己实现深拷贝(对指向的资源也进行拷贝)。像MyQueue这样的类型内部主要是自定义类型Stack成员,编译器自动生成的赋值运算符重载会调用Stack的赋值运算符重载,也不需要我们显示实现MyQueue的赋值运算符重载。**这里还有⼀个小技巧,如果⼀个类显示实现了析构并释放资源,那么他就需要显示写赋值运算符重载,否则就不需要。
#include<iostream>
using namespace std;
typedef int STDataType;
class Stack
{
public:
Stack(int n = 4)
{
_a = (STDataType*)malloc(sizeof(STDataType) * n);
if (nullptr == _a)
{
perror("malloc申请空间失败");
return;
}
_capacity = n;
_top = 0;
}
~Stack()
{
free(_a);
_a = nullptr;
_capacity = 0;
_top = 0;
cout << "~Stack()" << endl;
}
Stack& operator=(const Stack& st)
{
cout << "Stack(const Stack& st)" << endl;
// 需要对_a指向资源创建同样大的资源再拷贝值
_a = (STDataType*)malloc(sizeof(STDataType) * st._capacity);
if (nullptr == _a)
{
perror("malloc申请空间失败!!!");
return;
}
memcpy(_a, st._a, sizeof(STDataType) * st._top);
_top = st._top;
_capacity = st._capacity;
}
private:
STDataType * _a;
size_t _capacity;
size_t _top;
};
int main()
{
Stack st;
Stack al;
st = al;
return 0;
}