STM32杂交版(HAL库、音乐盒、闹钟、点阵屏、温湿度)

news2025/1/20 10:50:31

一、设计描述        

        本设计精心构建了一个以STM32MP157A高性能单片机为核心控制单元的综合性嵌入式系统。该系统巧妙融合了蜂鸣器、数码管显示器、点阵屏、温湿度传感器、LED指示灯以及按键等多种外设模块,形成了一个功能丰富、操作便捷的杂交版智能设备。通过串口通信,用户可以灵活地切换系统的工作模式,轻松实现闹钟、音乐盒播放及温湿度监测与调控等基本功能。

核心硬件

  • 主控单元:采用STM32MP157A单片机,凭借其强大的处理能力和丰富的外设接口,为系统提供了坚实的硬件基础。

软件平台

  • 开发工具:利用STM32CUBEIDE这一直观易用的集成开发环境,极大地提升了软件编程与调试的效率,确保了系统软件的稳定可靠。

系统功能亮点

  1. 模式灵活切换:通过串口通信,用户可以轻松地在闹钟、音乐盒播放及温湿度监测三种模式之间自由切换,满足不同场景下的使用需求。

  2. 动态信息显示:点阵屏作为系统的信息展示窗口,能够根据当前的工作模式显示相应的汉字(如“钟”代表闹钟模式,“音”代表音乐盒模式,“传”可视为温湿度监测的简化标识),为用户提供了直观的操作反馈。

  3. 按键交互体验:设计中充分考虑了用户的交互体验,通过按键即可在各模式下执行对应的功能操作,如音乐盒的速度与音量调节、歌曲切换、暂停/播放控制,以及闹钟的时间调整、设置多个闹钟、关闭闹钟等。

  4. 温湿度智能调控:系统内置温湿度传感器,能够实时监测环境状况,并通过串口接收用户指令调节温湿度的上下限阈值。一旦环境参数超出设定范围,LED指示灯将亮起作为边界提示,帮助用户及时采取措施。

二、基本配置信息

         音乐盒在之前做过所以配置不做改变:STM32音乐盒

        

三、STM32CUBEIDE配置

1、定时器--100ms

2、PWM配置(蜂鸣器 -- PB6)

3. 串口配置

注意针脚

4. IIC配置(温湿度,数码管,点阵屏)

5. GPIO配置(LED和按键)

6. NVIC

四、程序编写

(1)音乐盒代码

        音乐盒在之前已经写过,所以这里不再重复之前的操作,我们将串口和模式转换加进去。

         STM32音乐盒

        串口音乐控制函数


//串口音乐控制函数
void music_kz(){
	  if(EN_music == 1)//启动
		  play_music(list,Low_volume);
	  else
		  __HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量



	if(strcmp("music volume increase",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 10;
	}

	if(strcmp("music volume reduction",(char *)uart4_data)==0){
		Low_volume = Low_volume - Low_volume_cnt;
		if(Low_volume <= 0)
			Low_volume = 0;
	}


	if(strcmp("music speed increase",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		music_speed_i++;
		music_speed_i = music_speed_kz(music_speed_i);
	}
	if(strcmp("music speed reduction",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		music_speed_i--;
		music_speed_i = music_speed_kz(music_speed_i);
	}

	if(strcmp("music next song",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		list++;
		if(list > list_max){
			list = list_max;
		}
	}
	if(strcmp("music previous song",(char *)uart4_data)==0){
		list--;
		uart4_data[0] = '0';
		if(list < 0){
			list = 0;
		}
	}

	if(strcmp("music start",(char *)uart4_data)==0){
		EN_music = 1;
	}
	if(strcmp("music stop",(char *)uart4_data)==0){
		EN_music = 0;
	}


}

按键模式控制

用mode变量代表模式,后面三个按键同理。


void EXTI0_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI0_IRQn 0 */

	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0 && mode == 0)//确保数据稳定
	{

		//每次按下解决 音量�??????? Low_volume_cnt
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 0;
	}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_0)==GPIO_PIN_RESET && mode == 1) {

		shi_clock++;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		if(shi_clock>=24)
		{
			shi_clock=0;
		}

		miao_shi_clock=miao_clock/10;
		miao_ge_clock=miao_clock%10;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		buf[0]=smg_number[shi_shi_clock];
		buf[1]=smg_number[shi_ge_clock];
		buf[3]=smg_number[fen_shi_clock];
		buf[4]=smg_number[fen_ge_clock];
		buf[6]=smg_number[miao_shi_clock];
		buf[7]=smg_number[miao_ge_clock];
		}
  /* USER CODE END EXTI0_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
  /* USER CODE BEGIN EXTI0_IRQn 1 */

  /* USER CODE END EXTI0_IRQn 1 */
}

(2)模式切换

        mode变量切换


void uart_mode(){

	if(strcmp("mode = music",(char *)uart4_data)==0){
		mode = 0;
	}
	if(strcmp("mode = clock",(char *)uart4_data)==0){
		mode = 1;
	}
	if(strcmp("mode = sensor",(char *)uart4_data)==0){
		mode = 2;
	}
}

点阵屏字库


uint8_t DZP_data[6][34]={
		{0xAA,0x55,
		0xFD,0xFF,0xFE,0xFF,0xC0,0x07,0xFF,0xFF,0xF7,0xDF,0xFB,0xBF,0x00,0x01,0xFF,0xFF,
		0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF},//音

		{0xAA,0x55,
		0xEF,0xDF,0xEF,0xDF,0xC3,0xDF,0xDF,0xDF,0xBE,0x03,0x42,0xDB,0xEE,0xDB,0xEE,0xDB,
		0x02,0xDB,0xEE,0x03,0xEE,0xDB,0xEF,0xDF,0xEB,0xDF,0xE7,0xDF,0xEF,0xDF,0xFF,0xDF},//钟//1//

		{0xAA,0x55,
		0xF7,0xBF,0xF7,0xBF,0xF7,0xBF,0xEC,0x07,0xEF,0xBF,0xCF,0x7F,0xC8,0x01,0xAF,0x7F,
		0x6E,0xFF,0xEC,0x07,0xEF,0xF7,0xEE,0xEF,0xEF,0x5F,0xEF,0xBF,0xEF,0xDF,0xEF,0xDF}//传//2//

};

点阵屏显示

		if(mode_n != mode){
			mode_n = mode;
			for(int i = 0; i<34;i++){
			//printf("afgsbgafdffag");
				HAL_I2C_Master_Transmit(&hi2c1, 0xA0 , (uint8_t*)&DZP_data[mode][i], 1, 300);
				HAL_Delay(2);
			}
		}

(3)闹钟代码编写

        1. 基础变量

         main.c


//数码管闹钟基础变量
extern int buf[8];
extern int shi_shi;
extern int shi_ge ;
extern int fen_shi;
extern int fen_ge ;
extern int miao_shi ;
extern int miao_ge ;

extern int miao ;
extern int shi ;
extern int fen;
//闹钟保存数组
extern int alarm_clock_array[20][4];
extern int alarm_clock_array_cnt;

        stm32mp1xx_it.c 基础变量



//数码管闹钟基础设置
int smg_number[10] = {0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xE0,0xFE,0xF6};
int buf[8] = {0};

//闹钟保存数组
int alarm_clock_array[20][4] = {0};
int alarm_clock_array_cnt = 0;
//实时时钟信息
int shi_shi = 0;
int shi_ge = 0;
int fen_shi = 0;
int fen_ge = 0;
int miao_shi = 0;
int miao_ge = 0;
int miao = 0;
int shi = 0;
int fen = 0;

int EN_clock = 0;//闹钟设置使能
extern int en_clock;//用于控制闹钟响铃

//闹钟设置信息
int shi_shi_clock = 0;
int shi_ge_clock = 0;
int fen_shi_clock = 0;
int fen_ge_clock = 0;
int miao_shi_clock = 0;
int miao_ge_clock = 0;
int miao_clock = 0, shi_clock = 0, fen_clock = 0;

        2. TIM2定时器


void TIM2_IRQHandler(void)
{
  /* USER CODE BEGIN TIM2_IRQn 0 */
	if(EN_music == 1)
		time_100ms_cnt++;
	else
		time_100ms_cnt = time_100ms_cnt;	//其余状�?�不计数

	if(time_100ms_cnt >= Beat_speed_n * Beat_num){	//这个音节结束
		time_100ms_cnt = 0;
		flag = 1;	//发�?�音节结束信�???????
	}


	//数码�????
	static int smg_time_100ms = 0;
	smg_time_100ms++;
	if(smg_time_100ms>=10){
		miao++;
		smg_time_100ms = 0;
	}


	if (miao>=60)
	{
		miao=0;
		fen++;
		if(fen>=60)
		{
			fen=0;
			shi++;
			if(shi>=24)
			{
				shi=0;
			}
		}
	}


	if(miao >= 60){
		miao = miao-60;
		fen++;
	}
	if(fen>=60){
		fen = fen-60;
		shi ++;
	}
	if(shi>= 24){
		shi = shi -24;

	}


	miao_shi=miao/10;
	miao_ge=miao%10;

	fen_shi=fen/10;
	fen_ge=fen%10;

	shi_shi=shi/10;
	shi_ge=shi%10;


	if(EN_clock == 0){
	buf[0]=smg_number[shi_shi];
	buf[1]=smg_number[shi_ge];
	buf[3]=smg_number[fen_shi];
	buf[4]=smg_number[fen_ge];
	buf[6]=smg_number[miao_shi];
	buf[7]=smg_number[miao_ge];
	  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_RESET);
	  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
	  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
	}
	else{
		  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_SET);
		  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
		  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_SET);
	}

  /* USER CODE END TIM2_IRQn 0 */
  HAL_TIM_IRQHandler(&htim2);
  /* USER CODE BEGIN TIM2_IRQn 1 */

  /* USER CODE END TIM2_IRQn 1 */
}

        3. 按键控制设置闹钟和保存闹钟        


void EXTI9_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI9_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 0){//确保数据稳定
		EN_music = !EN_music;
	}

	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 1 ){//确保数据稳定
		if(EN_clock == 1){
			//闹钟设置成功
			alarm_clock_array[alarm_clock_array_cnt][0] = shi_clock;
			alarm_clock_array[alarm_clock_array_cnt][1] = fen_clock;
			alarm_clock_array[alarm_clock_array_cnt][2] = miao_clock;
			alarm_clock_array[alarm_clock_array_cnt][3] = 3;	//默认播放第三首音�????
			alarm_clock_array_cnt++;
			if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
			EN_clock = 0;
		}
		else if(EN_clock == 0){
			//设置闹钟
			shi_shi_clock = shi_shi;
			shi_ge_clock = shi_ge;
			fen_shi_clock = fen_shi;
			fen_ge_clock = fen_ge;
			miao_shi_clock = 0;
			miao_ge_clock = 0;
			miao_clock = 0;
			shi_clock = shi;
			fen_clock = fen;
			EN_clock = 1;
		}
	}






  /* USER CODE END EXTI9_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
  /* USER CODE BEGIN EXTI9_IRQn 1 */

  /* USER CODE END EXTI9_IRQn 1 */
}

        4. 时分按键+


void EXTI0_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI0_IRQn 0 */

	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0 && mode == 0)//确保数据稳定
	{

		//每次按下解决 音量�??????? Low_volume_cnt
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 0;
	}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_0)==GPIO_PIN_RESET && mode == 1) {

		shi_clock++;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		if(shi_clock>=24)
		{
			shi_clock=0;
		}

		miao_shi_clock=miao_clock/10;
		miao_ge_clock=miao_clock%10;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		buf[0]=smg_number[shi_shi_clock];
		buf[1]=smg_number[shi_ge_clock];
		buf[3]=smg_number[fen_shi_clock];
		buf[4]=smg_number[fen_ge_clock];
		buf[6]=smg_number[miao_shi_clock];
		buf[7]=smg_number[miao_ge_clock];
		}
  /* USER CODE END EXTI0_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
  /* USER CODE BEGIN EXTI0_IRQn 1 */

  /* USER CODE END EXTI0_IRQn 1 */
}

/**
  * @brief This function handles EXTI line1 interrupt.
  */
void EXTI1_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI1_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_1) == 0 && mode == 0)//确保数据稳定
		{
		music_speed_i++;
		music_speed_i = music_speed_kz(music_speed_i);
		}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_1)==GPIO_PIN_RESET && mode == 1) {
		fen_clock++;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		if(fen_clock>=60)
		{
			fen_clock=0;
			shi_clock++;
			fen_shi_clock=fen_clock/10;
			fen_ge_clock=fen_clock%10;
			shi_shi_clock=shi_clock/10;
			shi_ge_clock=shi_clock%10;
			if(shi_clock>=24)
			{
				shi_clock=0;
			}
		}

		miao_shi_clock=miao_clock/10;
		miao_ge_clock=miao_clock%10;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		buf[0]=smg_number[shi_shi_clock];
		buf[1]=smg_number[shi_ge_clock];
		buf[3]=smg_number[fen_shi_clock];
		buf[4]=smg_number[fen_ge_clock];
		buf[6]=smg_number[miao_shi_clock];
		buf[7]=smg_number[miao_ge_clock];
		}
  /* USER CODE END EXTI1_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
  /* USER CODE BEGIN EXTI1_IRQn 1 */

  /* USER CODE END EXTI1_IRQn 1 */
}

/**
  * @brief This function handles EXTI line2 interrupt.
  */
void EXTI2_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI2_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_2) == 0 && mode == 0)//确保数据稳定
		{
			list++;
			if(list > list_max){
				list = 0;
			}
		}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_2)==GPIO_PIN_RESET && mode == 1) {
			//在此处关闭闹�????
			en_clock = 0;
		}
  /* USER CODE END EXTI2_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
  /* USER CODE BEGIN EXTI2_IRQn 1 */

  /* USER CODE END EXTI2_IRQn 1 */
}

        5. 时钟相加函数(将后三的时分秒加入左三的对应时分秒)

//通过输入不同的n,返回shi fen miao
int clock_compute(int time_shi,int time_fen,int time_miao,int add_shi,int add_fen,int add_miao,int n){

	time_miao = time_miao + add_miao;
	time_fen = time_fen + time_miao/60;
	time_miao = time_miao % 60;

	time_fen = time_fen + add_fen;
	time_shi = time_shi + time_fen / 60;
	time_fen = time_fen%60;

	time_shi = time_shi + add_shi;
	time_shi = time_shi%24;

	if(n == 0) return time_shi;
	if(n == 1) return time_fen;
	if(n == 2) return time_miao;

	return -1;
}

        6. 提取对应字符串后两位数字


// 函数定义:从字符串中提取两位数字
int extract_two_digits(const char *str, const char *prefix, int *value) {
    char *pos = strstr(str, prefix); // 查找前缀的位�?????
    if (pos == NULL) return 0; // 如果没找到前�?????,返�?????0表示失败

    // 跳过前缀的长度,找到数字�?????始的位置
    pos += strlen(prefix);

    // �?????查接下来的两个字符是否是数字
    if (pos[0] >= '0' && pos[0] <= '9' && pos[1] >= '0' && pos[1] <= '9') {
        // 转换字符为数�?????
        *value = (pos[0] - '0') * 10 + (pos[1] - '0');
        return 1; // 成功提取,返�?????1
    }

    return 0; // 提取失败,返�?????0
}

        7. 串口设置目前时钟,定时闹钟,延时闹钟


//判断是否到底闹钟
int en_clock = 0;//用于控制闹钟响铃
int en_clock_cnt = 0;
int clock_end[3] = {0};//记录闹钟无人时关闭的时间
//串口设置闹钟
void uart_clock(){
	int ci = 0;
	int ci_n = 0;

	//ci = number_char_come(uart4_data,(uint8_t *)"clock shi = ",2);

	ci = extract_two_digits((char *)uart4_data, (char *)"clock shi = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		shi = ci_n;
	}

	//ci = number_char_come(uart4_data,(uint8_t *)"clock fen = ",2);
	ci = extract_two_digits((char *)uart4_data, (char *)"clock fen = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		fen = ci_n;
	}

	//ci = number_char_come(uart4_data,(uint8_t *)"clock miao = ",2);
	ci = extract_two_digits((char *)uart4_data, (char *)"clock miao = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		miao = ci_n;
	}

	//设置�?????个多少时间后的闹�?????
	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay shi = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock delay shi = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,ci_n,0,0,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,ci_n,0,0,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,ci_n,0,0,2);
		alarm_clock_array_cnt++;
	}
	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay fen = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock delay fen = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,ci_n,0,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,ci_n,0,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,ci_n,0,2);
		alarm_clock_array_cnt++;
	}

	ci = extract_two_digits((char *)uart4_data, "clock delay miao = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,0,ci_n,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,0,ci_n,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,0,ci_n,2);
		alarm_clock_array_cnt++;
	}

	// time shi = 12;fen = 10;miao = 12;music = 1;
	ci = 0;
	ci = ci + extract_two_digits((char *)uart4_data, "time shi = ", &alarm_clock_array[alarm_clock_array_cnt][0]);
	ci = ci + extract_two_digits((char *)uart4_data, ";fen = ", &alarm_clock_array[alarm_clock_array_cnt][1]);
	ci = ci + extract_two_digits((char *)uart4_data, ";miao = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
	//ci = ci + extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
	if(ci == 3){
		//完美对应
		uart4_data[0] = '1';
		ci = extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][3]);
		if(ci > list_max && ci<0) //如果大于音乐总数
			alarm_clock_array[alarm_clock_array_cnt][3] = 3;//默认�?????3

		alarm_clock_array_cnt++;
	}


	if(strcmp("clock delay list",(char *)uart4_data)==0){

		uart4_data[0] = '0';
		for(int i = 0; i< alarm_clock_array_cnt;i++){
			if(alarm_clock_array[i][0] != -1 && alarm_clock_array[i][1] != -1 && alarm_clock_array[i][2] != -1)
			printf("%d : time -> %d/%d/%d  \r\n",i,	alarm_clock_array[i][0],
															alarm_clock_array[i][1],
															alarm_clock_array[i][2]
															);
		}
	}

	//读取关闭第几位闹�?????
	//ci = number_char_come(uart4_data,(uint8_t *)"clock stop list = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock stop list = ", &ci_n);
	if(ci == 1){
		alarm_clock_array[ci_n][0] = -1;
		alarm_clock_array[ci_n][1] = -1;
		alarm_clock_array[ci_n][2] = -1;
	}

	//关闭闹钟
	if(strcmp("clock stop stop",(char *)uart4_data)==0){
		en_clock = 0;
	}


	if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
}

        8. 闹钟实现和停止(数码管显示)


void alarm_clock(){
    //时钟显示(数码管)
	static int pos = 0;
	HAL_I2C_Mem_Write(&hi2c1,0x70,0X10+pos, 1, (uint8_t*)&buf[pos],1,100);
	HAL_Delay(1);
	pos++;
	if(pos == 3 && pos == 6) pos++;
	if(pos == 8) pos = 0;


	uart_clock();//调用串口控制

	for(int j=0;j<alarm_clock_array_cnt && en_clock == 0;j++){
		//int cnt_clock = 0;
		if(alarm_clock_array[j][0] == shi && alarm_clock_array[j][1] == fen && alarm_clock_array[j][2] == miao) {
			en_clock_cnt = j;
			en_clock = 1;
			clock_end[0] = clock_compute(shi,fen,miao,0,0,30,0);
			clock_end[1] = clock_compute(shi,fen,miao,0,0,30,1);
			clock_end[2] = clock_compute(shi,fen,miao,0,0,30,2);
			break;
		}
	}

	//当闹钟响�?????30S
	if(shi == clock_end[0] && fen == clock_end[1] && miao == clock_end[2]){
		en_clock = 0;//关闭闹钟
		//EN_music = 1;
	}

	if(en_clock == 1 ){
			motor(10);
			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
		}
		else{
			HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_RESET);
			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
		}

}

(4)温湿度代码编写

        1. 温湿度基础变量     


uint8_t add1=0xFE,add2=0xE5,add3=0xE3;
//0xFE复位 0xE5启动湿度转换 0xE3启动温度转换
uint16_t RH_Code,RH_Code_low=0,RH_Code_high=0;
uint16_t Temp_Code,Temp_Code_low=0,Temp_Code_high=0;

int humidity_min = 50;//能仍受最低干燥程度
int temperature_max = 50;//能仍受的最高温度
int en_t = 0; //温度使能
int en_r = 0; //湿度使能

        2. 温湿度计算


//计算出温湿度
void Temperature_humidity(){
	//湿度
			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add2, 1,100);
			  //写命�??????? ox40里面写命�??????? 0xe5 启动湿度转换
			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &RH_Code, 1, 100);
			  //读命�??????? �???????0x40读取出湿度的数据 存入变量RH_CODE
			  HAL_Delay(30);
			  //进行高低字节转换
			  RH_Code_low=(RH_Code & 0xff);
			  RH_Code_high=(RH_Code >> 8)& 0xff;
			  RH_Code=(RH_Code_low << 8)+RH_Code_high;

			  //温度
			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add3, 1,100);
			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &Temp_Code, 1, 100);
			  //读命�??????? �???????0x40读取出温度的数据 存入变量Temp_CODE
			  HAL_Delay(30);
			  //进行高低字节转换
			  Temp_Code_low=(Temp_Code & 0xff);
			  Temp_Code_high=(Temp_Code >> 8)& 0xff;
			  Temp_Code=(Temp_Code_low << 8)+Temp_Code_high;

			  Temp_Code=17572*Temp_Code/65535-4685;//扩大�???????百�??
			  RH_Code=125*RH_Code/65536-6;//计算出湿度�??
			  //printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
			  //串口输出温湿�???????
			  HAL_Delay(2);
}

        3. 温湿度串口控制


void uart_sensor(){
	int tr=0;
	int tr_i = 0;
	tr = extract_two_digits((char *)uart4_data, "sensor  humidity_min = ", &tr_i);
	if(tr != 0){
		humidity_min = tr_i;
	}

	tr = extract_two_digits((char *)uart4_data, "sensor  temperature_max = ", &tr_i);
	if(tr != 0){
		temperature_max = tr_i;
	}


	if(strcmp("sensor temperature start",(char *)uart4_data)==0){
		en_t = 1;
	}
	if(strcmp("sensor humidity start",(char *)uart4_data)==0){
		en_r = 1;
	}
	if(strcmp("sensor temperature stop",(char *)uart4_data)==0){
		en_t = 0;
	}
	if(strcmp("sensor humidity stop",(char *)uart4_data)==0){
		en_r = 0;
	}


	if(strcmp("sensor list",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\r\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
		printf("sensor en_t : %d\r\n",en_t);
		printf("sensor en_r : %d\r\n",en_r);
		printf("sensor temperature_max : %d\r\n",temperature_max);
		printf("sensor humidity_min : %d\r\n",humidity_min);
	}

	if(strcmp("sensor Temp_Code RH_Code",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
	}


}

        4. 温湿度主函数


void sensor(){
	static int iii = 0;
	if(iii == 0){
		HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add1, 1, 100);
		HAL_Delay(2);
		iii++;
	}
	Temperature_humidity();
	uart_sensor();

	if(RH_Code < humidity_min && en_r == 1){
		//motor(10);
		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_SET);
	}
	else{
		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_RESET);
	}

	if(Temp_Code/100 >= temperature_max && en_t == 1){
		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_SET);
	}
	else{
		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_RESET);
	}
}

(5)主函数


void end_main(){

	  tone_init(); //初始化音量频�??????
	  list_max = music_init();//更新乐谱
	  HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);	//启动蜂鸣器定时器
	  HAL_TIM_Base_Start_IT(&htim2);		  	//启动定时�??????2
	  HAL_TIM_Base_Start_IT(&htim3);		  	//启动定时�??????2

	  //1 使能串口空闲中断
	  __HAL_UART_ENABLE_IT(&huart4,UART_IT_IDLE);
	  //2.使能串口中断接收数据
	  HAL_UART_Receive_IT(&huart4,rx_buf,sizeof(rx_buf));
	  int mode_n = 1;

	while(1){
		music_kz();

		alarm_clock();
		uart_mode();

		sensor();

		if(mode_n != mode){
			mode_n = mode;
			for(int i = 0; i<34;i++){
			//printf("afgsbgafdffag");
				HAL_I2C_Master_Transmit(&hi2c1, 0xA0 , (uint8_t*)&DZP_data[mode][i], 1, 300);
				HAL_Delay(2);
			}
		}

	}
}

五、总代码

main.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file           : main.c
  * @brief          : Main program body
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */
/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */


#include <string.h>


uint8_t rx_buf[200]={0};	//接收不定长数
uint8_t uart4_data[200] = {0};

extern int mode;	//模式
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */
/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
I2C_HandleTypeDef hi2c1;

TIM_HandleTypeDef htim2;
TIM_HandleTypeDef htim3;
TIM_HandleTypeDef htim4;

UART_HandleTypeDef huart4;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_I2C1_Init(void);
static void MX_TIM2_Init(void);
static void MX_TIM4_Init(void);
static void MX_UART4_Init(void);
static void MX_TIM3_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */



//重写标准输出函数
int __io_putchar(int ch)
{
	HAL_UART_Transmit(&huart4, (uint8_t *)&ch, 1, 10);
	return ch;
}


// 自定义空闲中断处理函�????????
void uart4_idle_func(void)
{
	int len = 0;
	//判定 是否为空闲中�????????
	if(  __HAL_UART_GET_FLAG(&huart4, UART_FLAG_IDLE) == SET )
	{
		// 清除空闲中断标志,因为是自己定义的函数 系统不会清标
		__HAL_UART_CLEAR_IDLEFLAG(&huart4);
		// 计算接收数据的长
		len = sizeof(rx_buf) - huart4.RxXferCount;
		//第二个参数是 还剩下的空间
		// 打印接收到时数据  数据处理
		//printf("uart rx len = %d, data: %s\r\n",len, rx_buf);

	    // 使用strcpy复制字符�????????
	    strcpy((char *)uart4_data, (char *)rx_buf);

	    printf("%s instructions success\r\n", uart4_data);
		// 准备接收下一次数�?????????
		memset(rx_buf,0,len); // 清理接收容器
		//重置接收指针 剩余容器大小
		huart4.pRxBuffPtr = rx_buf;
		huart4.RxXferCount = sizeof(rx_buf);
	}
}

//控制马达
void motor(int d){
	HAL_GPIO_TogglePin(GPIOF, GPIO_PIN_6);//
	HAL_Delay(d);
}


// 音乐
// 音乐盒基�??????变量
extern int time_100ms_cnt; //0.1s计数�??????
extern int Beat_speed;		//节拍速度,代表半个节拍需要多少个0.1s
extern int Beat_speed_n;	//实际执行的节拍数

extern int Beat_num;		//这个�??????个音�??????要多少个 半拍
extern int flag; 			//当其等于 1 时,表示�??????个音结束
extern int EN_music ;				//使能信号,用于开启整个音乐盒
extern int list ;			//音乐列表
extern int list_max ;		//音乐总数
extern int Low_volume ;		//音量大小
extern int Low_volume_cnt;
extern int music_speed_i; 	//音乐播放速度模式保存
extern int music_speed_kz(int i);

int tone[3][8];
//初始化高中低音频�??????
void tone_init(){
	tone[1][0] = 0;	//不执行音�??????
	tone[1][1] = 191;
	tone[1][2] = 170;
	tone[1][3] = 151;
	tone[1][4] = 143;
	tone[1][5] = 127;
	tone[1][6] = 113;
	tone[1][7] = 101;
    // 低音 (Low)
    for (int i = 0; i < 8; i++) {
        tone[0][i] = tone[1][i] * 2; // 只是低音 近似的�??
    }

    // 高音 (High)
    for (int i = 0; i < 8; i++) {
        tone[2][i] = tone[1][i] / 2; // 只是高音  近似的�??
    }
}

#define MAX_unit_num 200 //�????????大乐谱数�????????
//创建结构体保存乐�????????
struct music_unit{
	char name[50];		//乐谱名称
	int unit[MAX_unit_num];		//发什么音
	int unit_HL[MAX_unit_num];	//发高音或者其�????????
	int time[MAX_unit_num];		//发音时间
	//int time_4[MAX_unit_num];	//判断是否�????????1/4�????????
	int num;			//记录有多少个
}music[25];

//创建乐谱 返回有多少首音乐
int music_init(){
	int cnt = 0;
	//第一首音�???????? 生日快乐
	strcpy(music[0].name, "生日快乐"); 				// 使用strcpy复制字符�???????? 给音乐命�????????
	int music0_unit[29] = {0,0, 5,5,6,5,1,7, 5,5,6,5,2,1,
								5,5,6,3,1,7, 6,4,4,3,1,2,1,
								0,0};		//基础乐谱
	int music0_time[29] = {1,1, 1,1,2,2,2,3, 1,1,2,2,2,3,
								2,2,2,2,2,2, 2,2,2,2,2,2,3,
								1,1};		//乐谱节拍
	music[0].num = 29;										//乐谱总数
	int music0_unit_HL[29] = {1,1,
								0,0,0,0,1,0, 0,0,0,0,1,1,
								0,0,1,1,1,0, 0,1,1,1,1,1,1,
								1,1}; 	//乐谱全为中音

	//第二首音�???????? �????????闪一闪亮晶晶
	cnt++;
	strcpy(music[1].name, "�????????闪一闪亮晶晶"); 					// 使用strcpy复制字符�???????? 给音乐命�????????
	int music1_unit[44] = {0,
						   1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
						   5,5,4,4,3,3,2, 5,5,4,4,3,3,2,
						   1,1,5,5,6,6,5, 4,4,3,3,2,2,1,
						   0};		//基础乐谱
	int music1_time[44] = {2,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2,2,2,2,2,2,3, 2,2,2,2,2,2,3,
						   2};		//乐谱节拍
	int music1_unit_HL[44] =
						  {1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1,1,1,1,1,1,1, 1,1,1,1,1,1,1,
						   1}; 		//乐谱全为中音
	music[1].num = 44;											//乐谱总数



	//第三首音�???????? 两只老虎
	cnt++;
	strcpy(music[2].name, "两只老虎"); 					// 使用strcpy复制字符�???????? 给音乐命�????????
	int music2_unit[38] = {0,
						   1,2,3,1, 1,2,3,1, 3,4,5,5, 3,4,5,5,
						   5,6,5,4, 3,1,5,6, 5,4,3,1, 1,5,1,1,
						   1,5,1,1, 0};		//基础乐谱
	int music2_time[38] = {2,
						   1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
						   0,0,0,0, 1,1,0,0, 0,0,1,1, 1,1,1,2,
						   1,1,1,2, 2};		//乐谱节拍
	int music2_unit_HL[38] =
						  {1,
					       1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
						   1,1,1,1, 1,1,1,1, 1,1,1,1, 1,0,1,1,
						   1,0,1,1, 1}; 		//乐谱�????????   中音
	music[2].num = 38;											//乐谱总数


	//第四首音�???????? 青花瓷片�????????
	cnt++;
	strcpy(music[3].name, "青花瓷片"); 					// 使用strcpy复制字符�???????? 给音乐命�????????
	int music3_unit[100] = {0,0,0,0, 0,5,5,3, 2,3,6,2, 3,5,3,2, 2,5,5,3,
						    2,3,5,2, 3,5,2,1, 1,1,2,3, 5,6,5,4, 5,3,3,2,
						    2,2,1,2, 1,1,2,1, 2,3,5,3, 3,3,5,5, 3,2,3,6,
						    2,3,5,3, 2,2,5,5, 3,2,3,5, 2,3,5,2, 1,1,1,2,
						    3,5,6,5, 4,5,3,3, 2,2,5,3, 2,2,2,1, 1,0,0,0};		//基础乐谱

	int music3_time[100] = {0,0,0,0, 0,0,0,0, 0,0,1,0, 0,0,0,2, 0,0,0,0,
							0,0,1,0, 0,0,0,2, 0,0,0,0, 0,0,0,0, 0,0,0,0,
							2,0,0,0, 0,0,0,0, 0,1,0,0, 2,0,0,0, 0,0,0,1,
							0,0,0,0, 2,0,0,0, 0,0,0,1, 0,0,0,0, 2,0,0,0,
							0,0,0,0, 0,0,0,0, 0,2,0,1, 0,0,0,1, 2,1,1,1};		//乐谱节拍

	for(int i =0;i<100;i++)
		music3_time[i] = music3_time[i]+1;

	int music3_unit_HL[100] =
						  { 1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1,
							1,1,0,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1,
							1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,1, 1,1,1,0,
							1,1,1,1, 1,1,1,1, 1,1,1,0, 1,1,1,1, 1,1,1,1,
							1,1,1,1, 1,1,1,1, 1,1,0,1, 1,1,1,1, 1,1,1,1}; 		//乐谱�????????   中音
	music[3].num = 100;											//乐谱总数




	for (int i = 0; i < MAX_unit_num; i++) {
		//将乐谱保存进结构�????????
		if(i<music[0].num){//确保数据正确
			music[0].unit[i] =music0_unit[i];
			music[0].unit_HL[i] =music0_unit_HL[i];
			music[0].time[i] =music0_time[i];
		}


		//将乐谱保存进结构�????????
		if(i<music[1].num){//确保数据正确
			music[1].unit[i] =music1_unit[i];
			music[1].unit_HL[i] =music1_unit_HL[i];
			music[1].time[i] =music1_time[i];
		}

		//将乐谱保存进结构�????????
		if(i<music[2].num){//确保数据正确
			music[2].unit[i] =music2_unit[i];
			music[2].unit_HL[i] =music2_unit_HL[i];
			music[2].time[i] =music2_time[i];
		}


		//将乐谱保存进结构�????????
		if(i<music[3].num){//确保数据正确
			music[3].unit[i] =music3_unit[i];
			music[3].unit_HL[i] =music3_unit_HL[i];
			music[3].time[i] =music3_time[i];
		}
	}


	return cnt;
}

//播放�???? N首音�???? 音量�???? X 0 - 100
void play_music(int n, int x){
	static int ni = 0; 		//用于判断 是否换了音乐
	static int cnt = 0;		//记录播放到哪�????�???? 音节
	if(ni != n ){//如果音乐换了
		ni = n;
		cnt = 0;
		__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
		HAL_Delay(1000);//
	}

	//
	int value = tone[music[n].unit_HL[cnt]][music[n].unit[cnt]];	//获取频率
	if(flag == 1){	//接受到一个音节结�????
		flag = 0;	//复位
		Beat_num = music[n].time[cnt]; 				//这个音需要多少个半拍
		//LED_BEEP(music[n].unit[cnt]);				//LED随音节变动�?�变�????

		if(music[n].time[cnt] == 0){//如果�???? 1/4�????
			Beat_speed_n = Beat_speed /2;
		}
		else{//如果没有1/4�????
			Beat_speed_n = Beat_speed;
		}

		//if(value != 0)//如果有频率�?�执行,没有者只更新 时间�????
		__HAL_TIM_SET_AUTORELOAD(&htim4,value);		//自动加载频率�????

		cnt ++; 	//可进行下�????次音�????
		if(cnt >= music[n].num){ //如果�????个音节播放完�????
			cnt = 0;//重新播放
			//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量
			//HAL_Delay(500);//
		}
	}
	//__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,x * (value/100));//设置音量
	__HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,(value/10)*x);//设置音量
}


//串口音乐控制函数
void music_kz(){
	  if(EN_music == 1)//启动
		  play_music(list,Low_volume);
	  else
		  __HAL_TIM_SET_COMPARE(&htim4,TIM_CHANNEL_1,0);//设置音量



	if(strcmp("music volume increase",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 10;
	}

	if(strcmp("music volume reduction",(char *)uart4_data)==0){
		Low_volume = Low_volume - Low_volume_cnt;
		if(Low_volume <= 0)
			Low_volume = 0;
	}


	if(strcmp("music speed increase",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		music_speed_i++;
		music_speed_i = music_speed_kz(music_speed_i);
	}
	if(strcmp("music speed reduction",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		music_speed_i--;
		music_speed_i = music_speed_kz(music_speed_i);
	}

	if(strcmp("music next song",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		list++;
		if(list > list_max){
			list = list_max;
		}
	}
	if(strcmp("music previous song",(char *)uart4_data)==0){
		list--;
		uart4_data[0] = '0';
		if(list < 0){
			list = 0;
		}
	}

	if(strcmp("music start",(char *)uart4_data)==0){
		EN_music = 1;
	}
	if(strcmp("music stop",(char *)uart4_data)==0){
		EN_music = 0;
	}


}


//数码管闹�?????
extern int buf[8];
extern int shi_shi;
extern int shi_ge ;
extern int fen_shi;
extern int fen_ge ;
extern int miao_shi ;
extern int miao_ge ;

extern int miao ;
extern int shi ;
extern int fen;
//闹钟保存数组
extern int alarm_clock_array[20][4];
extern int alarm_clock_array_cnt;

//通过输入不同的n,返回shi fen miao
int clock_compute(int time_shi,int time_fen,int time_miao,int add_shi,int add_fen,int add_miao,int n){

	time_miao = time_miao + add_miao;
	time_fen = time_fen + time_miao/60;
	time_miao = time_miao % 60;

	time_fen = time_fen + add_fen;
	time_shi = time_shi + time_fen / 60;
	time_fen = time_fen%60;

	time_shi = time_shi + add_shi;
	time_shi = time_shi%24;

	if(n == 0) return time_shi;
	if(n == 1) return time_fen;
	if(n == 2) return time_miao;

	return -1;
}


//将字符解成数�?????
int char_number(uint8_t c){
    if(c >= '0' && c <= '9')
        return c-'0';
    else
        return -1;
}

// zfc 为当前传入字符串
// zfc_n为比较字符串
// num为如果两字符串最初相等,则取字符串后面多少位的数�?????
int number_char_come(uint8_t zfc[200], uint8_t zfc_n[200], int num){
	size_t len = strlen((char *)zfc_n);//无符号整数类�?????

	int cnt = 0;
	for(int i = 0;i < len;i++){
		if(zfc[i] != zfc_n[i]) return -1; //不相�?????
		else cnt++;
	}
	if(cnt != len)	 return -1;//两字符串不等

	size_t shen_len = strlen((char *)zfc) - len;//剩余字符串长�?????
	size_t hig_num = 0;//用以保存实际有效位数

	if(shen_len > num) hig_num = num;
	else hig_num = shen_len;
	//int number[200];



    int number1 = 0;
    int multiplier = 1; // 用于计算10的幂的变�?????
	for(int i = len + hig_num - 1; i >= len;i--){
		//number[i-len] = char_number(zfc[i]);
		if(char_number(zfc[i])== -1) {
			printf("\r\r\r number error\r\n");
			return -1;
		}

		multiplier = multiplier*10;
		number1 = number1 + char_number(zfc[i])*multiplier;
	}

	return number1;

}

// 函数定义:从字符串中提取两位数字
int extract_two_digits(const char *str, const char *prefix, int *value) {
    char *pos = strstr(str, prefix); // 查找前缀的位�?????
    if (pos == NULL) return 0; // 如果没找到前�?????,返�?????0表示失败

    // 跳过前缀的长度,找到数字�?????始的位置
    pos += strlen(prefix);

    // �?????查接下来的两个字符是否是数字
    if (pos[0] >= '0' && pos[0] <= '9' && pos[1] >= '0' && pos[1] <= '9') {
        // 转换字符为数�?????
        *value = (pos[0] - '0') * 10 + (pos[1] - '0');
        return 1; // 成功提取,返�?????1
    }

    return 0; // 提取失败,返�?????0
}



//判断是否到底闹钟
int en_clock = 0;//用于控制闹钟响铃
int en_clock_cnt = 0;
int clock_end[3] = {0};//记录闹钟无人时关闭的时间
//串口设置闹钟
void uart_clock(){
	int ci = 0;
	int ci_n = 0;

	//ci = number_char_come(uart4_data,(uint8_t *)"clock shi = ",2);

	ci = extract_two_digits((char *)uart4_data, (char *)"clock shi = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		shi = ci_n;
	}

	//ci = number_char_come(uart4_data,(uint8_t *)"clock fen = ",2);
	ci = extract_two_digits((char *)uart4_data, (char *)"clock fen = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		fen = ci_n;
	}

	//ci = number_char_come(uart4_data,(uint8_t *)"clock miao = ",2);
	ci = extract_two_digits((char *)uart4_data, (char *)"clock miao = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		miao = ci_n;
	}

	//设置�?????个多少时间后的闹�?????
	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay shi = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock delay shi = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,ci_n,0,0,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,ci_n,0,0,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,ci_n,0,0,2);
		alarm_clock_array_cnt++;
	}
	//ci = number_char_come(uart4_data,(uint8_t *)"clock delay fen = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock delay fen = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,ci_n,0,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,ci_n,0,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,ci_n,0,2);
		alarm_clock_array_cnt++;
	}

	ci = extract_two_digits((char *)uart4_data, "clock delay miao = ", &ci_n);
	if(ci == 1){
		uart4_data[0] = '1';
		alarm_clock_array[alarm_clock_array_cnt][0] = clock_compute(shi,fen,miao,0,0,ci_n,0);
		alarm_clock_array[alarm_clock_array_cnt][1] = clock_compute(shi,fen,miao,0,0,ci_n,1);
		alarm_clock_array[alarm_clock_array_cnt][2] = clock_compute(shi,fen,miao,0,0,ci_n,2);
		alarm_clock_array_cnt++;
	}

	// time shi = 12;fen = 10;miao = 12;music = 1;
	ci = 0;
	ci = ci + extract_two_digits((char *)uart4_data, "time shi = ", &alarm_clock_array[alarm_clock_array_cnt][0]);
	ci = ci + extract_two_digits((char *)uart4_data, ";fen = ", &alarm_clock_array[alarm_clock_array_cnt][1]);
	ci = ci + extract_two_digits((char *)uart4_data, ";miao = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
	//ci = ci + extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][2]);
	if(ci == 3){
		//完美对应
		uart4_data[0] = '1';
		ci = extract_two_digits((char *)uart4_data, ";music = ", &alarm_clock_array[alarm_clock_array_cnt][3]);
		if(ci > list_max && ci<0) //如果大于音乐总数
			alarm_clock_array[alarm_clock_array_cnt][3] = 3;//默认�?????3

		alarm_clock_array_cnt++;
	}


	if(strcmp("clock delay list",(char *)uart4_data)==0){

		uart4_data[0] = '0';
		for(int i = 0; i< alarm_clock_array_cnt;i++){
			if(alarm_clock_array[i][0] != -1 && alarm_clock_array[i][1] != -1 && alarm_clock_array[i][2] != -1)
			printf("%d : time -> %d/%d/%d  \r\n",i,	alarm_clock_array[i][0],
															alarm_clock_array[i][1],
															alarm_clock_array[i][2]
															);
		}
	}

	//读取关闭第几位闹�?????
	//ci = number_char_come(uart4_data,(uint8_t *)"clock stop list = ",2);
	ci = extract_two_digits((char *)uart4_data, "clock stop list = ", &ci_n);
	if(ci == 1){
		alarm_clock_array[ci_n][0] = -1;
		alarm_clock_array[ci_n][1] = -1;
		alarm_clock_array[ci_n][2] = -1;
	}

	//关闭闹钟
	if(strcmp("clock stop stop",(char *)uart4_data)==0){
		en_clock = 0;
	}


	if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
}
void smg_xians(){

}


void alarm_clock(){

	static int pos = 0;
	HAL_I2C_Mem_Write(&hi2c1,0x70,0X10+pos, 1, (uint8_t*)&buf[pos],1,100);
	HAL_Delay(1);
	pos++;
	if(pos == 3 && pos == 6) pos++;
	if(pos == 8) pos = 0;


	uart_clock();//调用串口控制

	for(int j=0;j<alarm_clock_array_cnt && en_clock == 0;j++){
		//int cnt_clock = 0;
		if(alarm_clock_array[j][0] == shi && alarm_clock_array[j][1] == fen && alarm_clock_array[j][2] == miao) {
			en_clock_cnt = j;
			en_clock = 1;
			clock_end[0] = clock_compute(shi,fen,miao,0,0,30,0);
			clock_end[1] = clock_compute(shi,fen,miao,0,0,30,1);
			clock_end[2] = clock_compute(shi,fen,miao,0,0,30,2);
			break;
		}
	}

	//当闹钟响�?????30S
	if(shi == clock_end[0] && fen == clock_end[1] && miao == clock_end[2]){
		en_clock = 0;//关闭闹钟
		//EN_music = 1;
	}

	if(en_clock == 1 ){
			motor(10);
			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
		}
		else{
			HAL_GPIO_WritePin(GPIOF, GPIO_PIN_6, GPIO_PIN_RESET);
			HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
		}

}


uint8_t add1=0xFE,add2=0xE5,add3=0xE3;
//0xFE复位 0xE5启动湿度转换 0xE3启动温度转换
uint16_t RH_Code,RH_Code_low=0,RH_Code_high=0;
uint16_t Temp_Code,Temp_Code_low=0,Temp_Code_high=0;

int humidity_min = 50;//能仍受的�?????低干燥程�?????
int temperature_max = 50;//能仍受的�?????高温�?????
int en_t = 0; //温度使能
int en_r = 0; //湿度使能

//计算出温湿度
void Temperature_humidity(){
	//湿度
			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add2, 1,100);
			  //写命�??????? ox40里面写命�??????? 0xe5 启动湿度转换
			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &RH_Code, 1, 100);
			  //读命�??????? �???????0x40读取出湿度的数据 存入变量RH_CODE
			  HAL_Delay(30);
			  //进行高低字节转换
			  RH_Code_low=(RH_Code & 0xff);
			  RH_Code_high=(RH_Code >> 8)& 0xff;
			  RH_Code=(RH_Code_low << 8)+RH_Code_high;

			  //温度
			  HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add3, 1,100);
			  HAL_I2C_Master_Receive(&hi2c1, 0x81, &Temp_Code, 1, 100);
			  //读命�??????? �???????0x40读取出温度的数据 存入变量Temp_CODE
			  HAL_Delay(30);
			  //进行高低字节转换
			  Temp_Code_low=(Temp_Code & 0xff);
			  Temp_Code_high=(Temp_Code >> 8)& 0xff;
			  Temp_Code=(Temp_Code_low << 8)+Temp_Code_high;

			  Temp_Code=17572*Temp_Code/65535-4685;//扩大�???????百�??
			  RH_Code=125*RH_Code/65536-6;//计算出湿度�??
			  //printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
			  //串口输出温湿�???????
			  HAL_Delay(2);
}



void uart_sensor(){
	int tr=0;
	int tr_i = 0;
	tr = extract_two_digits((char *)uart4_data, "sensor  humidity_min = ", &tr_i);
	if(tr != 0){
		humidity_min = tr_i;
	}

	tr = extract_two_digits((char *)uart4_data, "sensor  temperature_max = ", &tr_i);
	if(tr != 0){
		temperature_max = tr_i;
	}


	if(strcmp("sensor temperature start",(char *)uart4_data)==0){
		en_t = 1;
	}
	if(strcmp("sensor humidity start",(char *)uart4_data)==0){
		en_r = 1;
	}
	if(strcmp("sensor temperature stop",(char *)uart4_data)==0){
		en_t = 0;
	}
	if(strcmp("sensor humidity stop",(char *)uart4_data)==0){
		en_r = 0;
	}


	if(strcmp("sensor list",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\r\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
		printf("sensor en_t : %d\r\n",en_t);
		printf("sensor en_r : %d\r\n",en_r);
		printf("sensor temperature_max : %d\r\n",temperature_max);
		printf("sensor humidity_min : %d\r\n",humidity_min);
	}

	if(strcmp("sensor Temp_Code RH_Code",(char *)uart4_data)==0){
		uart4_data[0] = '0';
		printf("Temp_Code = \r%d.%d     RH_Code = %d%%\n",Temp_Code/100,Temp_Code%100,RH_Code%100);
	}


}


void sensor(){
	static int iii = 0;
	if(iii == 0){
		HAL_I2C_Master_Transmit(&hi2c1, 0x80, &add1, 1, 100);
		HAL_Delay(2);
		iii++;
	}
	Temperature_humidity();
	uart_sensor();

	if(RH_Code < humidity_min && en_r == 1){
		//motor(10);
		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_SET);
	}
	else{
		HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11, GPIO_PIN_RESET);
	}

	if(Temp_Code/100 >= temperature_max && en_t == 1){
		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_SET);
	}
	else{
		  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_10, GPIO_PIN_RESET);
	}
}


uint8_t DZP_data[6][34]={
		{0xAA,0x55,
		0xFD,0xFF,0xFE,0xFF,0xC0,0x07,0xFF,0xFF,0xF7,0xDF,0xFB,0xBF,0x00,0x01,0xFF,0xFF,
		0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF,0xEF,0xEF,0xE0,0x0F,0xEF,0xEF},//�?//0//

		{0xAA,0x55,
		0xEF,0xDF,0xEF,0xDF,0xC3,0xDF,0xDF,0xDF,0xBE,0x03,0x42,0xDB,0xEE,0xDB,0xEE,0xDB,
		0x02,0xDB,0xEE,0x03,0xEE,0xDB,0xEF,0xDF,0xEB,0xDF,0xE7,0xDF,0xEF,0xDF,0xFF,0xDF},//�?//1//

		{0xAA,0x55,
		0xF7,0xBF,0xF7,0xBF,0xF7,0xBF,0xEC,0x07,0xEF,0xBF,0xCF,0x7F,0xC8,0x01,0xAF,0x7F,
		0x6E,0xFF,0xEC,0x07,0xEF,0xF7,0xEE,0xEF,0xEF,0x5F,0xEF,0xBF,0xEF,0xDF,0xEF,0xDF}//�?//2//

};

void uart_mode(){

	if(strcmp("mode = music",(char *)uart4_data)==0){
		mode = 0;
	}
	if(strcmp("mode = clock",(char *)uart4_data)==0){
		mode = 1;
	}
	if(strcmp("mode = sensor",(char *)uart4_data)==0){
		mode = 2;
	}
}
void end_main(){

	  tone_init(); //初始化音量频�??????
	  list_max = music_init();//更新乐谱
	  HAL_TIM_PWM_Start(&htim4, TIM_CHANNEL_1);	//启动蜂鸣器定时器
	  HAL_TIM_Base_Start_IT(&htim2);		  	//启动定时�??????2
	  HAL_TIM_Base_Start_IT(&htim3);		  	//启动定时�??????2

	  //1 使能串口空闲中断
	  __HAL_UART_ENABLE_IT(&huart4,UART_IT_IDLE);
	  //2.使能串口中断接收数据
	  HAL_UART_Receive_IT(&huart4,rx_buf,sizeof(rx_buf));
	  int mode_n = 1;

	while(1){
		music_kz();

		alarm_clock();
		uart_mode();

		sensor();

		if(mode_n != mode){
			mode_n = mode;
			for(int i = 0; i<34;i++){
			//printf("afgsbgafdffag");
				HAL_I2C_Master_Transmit(&hi2c1, 0xA0 , (uint8_t*)&DZP_data[mode][i], 1, 300);
				HAL_Delay(2);
			}
		}

	}
}
/* USER CODE END 0 */

/**
  * @brief  The application entry point.
  * @retval int
  */
int main(void)
{
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  if(IS_ENGINEERING_BOOT_MODE())
  {
    /* Configure the system clock */
    SystemClock_Config();
  }

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_I2C1_Init();
  MX_TIM2_Init();
  MX_TIM4_Init();
  MX_UART4_Init();
  MX_TIM3_Init();
  /* USER CODE BEGIN 2 */

  end_main();
  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  {
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

	  //printf("afsgbhdn\t\n");
	  //HAL_Delay(500);
  }
  /* USER CODE END 3 */
}

/**
  * @brief System Clock Configuration
  * @retval None
  */
void SystemClock_Config(void)
{
  RCC_OscInitTypeDef RCC_OscInitStruct = {0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

  /** Initializes the RCC Oscillators according to the specified parameters
  * in the RCC_OscInitTypeDef structure.
  */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI|RCC_OSCILLATORTYPE_LSI;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.HSICalibrationValue = 16;
  RCC_OscInitStruct.HSIDivValue = RCC_HSI_DIV1;
  RCC_OscInitStruct.LSIState = RCC_LSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL2.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL3.PLLState = RCC_PLL_NONE;
  RCC_OscInitStruct.PLL4.PLLState = RCC_PLL_NONE;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
  /** RCC Clock Config
  */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_ACLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2
                              |RCC_CLOCKTYPE_PCLK3|RCC_CLOCKTYPE_PCLK4
                              |RCC_CLOCKTYPE_PCLK5;
  RCC_ClkInitStruct.AXISSInit.AXI_Clock = RCC_AXISSOURCE_HSI;
  RCC_ClkInitStruct.AXISSInit.AXI_Div = RCC_AXI_DIV1;
  RCC_ClkInitStruct.MCUInit.MCU_Clock = RCC_MCUSSOURCE_HSI;
  RCC_ClkInitStruct.MCUInit.MCU_Div = RCC_MCU_DIV1;
  RCC_ClkInitStruct.APB4_Div = RCC_APB4_DIV1;
  RCC_ClkInitStruct.APB5_Div = RCC_APB5_DIV1;
  RCC_ClkInitStruct.APB1_Div = RCC_APB1_DIV1;
  RCC_ClkInitStruct.APB2_Div = RCC_APB2_DIV1;
  RCC_ClkInitStruct.APB3_Div = RCC_APB3_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct) != HAL_OK)
  {
    Error_Handler();
  }
}

/**
  * @brief I2C1 Initialization Function
  * @param None
  * @retval None
  */
static void MX_I2C1_Init(void)
{

  /* USER CODE BEGIN I2C1_Init 0 */

  /* USER CODE END I2C1_Init 0 */

  /* USER CODE BEGIN I2C1_Init 1 */

  /* USER CODE END I2C1_Init 1 */
  hi2c1.Instance = I2C1;
  hi2c1.Init.Timing = 0x10707DBC;
  hi2c1.Init.OwnAddress1 = 0;
  hi2c1.Init.AddressingMode = I2C_ADDRESSINGMODE_7BIT;
  hi2c1.Init.DualAddressMode = I2C_DUALADDRESS_DISABLE;
  hi2c1.Init.OwnAddress2 = 0;
  hi2c1.Init.OwnAddress2Masks = I2C_OA2_NOMASK;
  hi2c1.Init.GeneralCallMode = I2C_GENERALCALL_DISABLE;
  hi2c1.Init.NoStretchMode = I2C_NOSTRETCH_DISABLE;
  if (HAL_I2C_Init(&hi2c1) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Analogue filter
  */
  if (HAL_I2CEx_ConfigAnalogFilter(&hi2c1, I2C_ANALOGFILTER_ENABLE) != HAL_OK)
  {
    Error_Handler();
  }
  /** Configure Digital filter
  */
  if (HAL_I2CEx_ConfigDigitalFilter(&hi2c1, 0) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN I2C1_Init 2 */

  /* USER CODE END I2C1_Init 2 */

}

/**
  * @brief TIM2 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM2_Init(void)
{

  /* USER CODE BEGIN TIM2_Init 0 */

  /* USER CODE END TIM2_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM2_Init 1 */

  /* USER CODE END TIM2_Init 1 */
  htim2.Instance = TIM2;
  htim2.Init.Prescaler = 6400-1;
  htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim2.Init.Period = 1000-1;
  htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim2) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim2, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim2, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM2_Init 2 */

  /* USER CODE END TIM2_Init 2 */

}

/**
  * @brief TIM3 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM3_Init(void)
{

  /* USER CODE BEGIN TIM3_Init 0 */

  /* USER CODE END TIM3_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};

  /* USER CODE BEGIN TIM3_Init 1 */

  /* USER CODE END TIM3_Init 1 */
  htim3.Instance = TIM3;
  htim3.Init.Prescaler = 6399;
  htim3.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim3.Init.Period = 10000-1;
  htim3.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim3.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim3) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim3, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim3, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM3_Init 2 */

  /* USER CODE END TIM3_Init 2 */

}

/**
  * @brief TIM4 Initialization Function
  * @param None
  * @retval None
  */
static void MX_TIM4_Init(void)
{

  /* USER CODE BEGIN TIM4_Init 0 */

  /* USER CODE END TIM4_Init 0 */

  TIM_ClockConfigTypeDef sClockSourceConfig = {0};
  TIM_MasterConfigTypeDef sMasterConfig = {0};
  TIM_OC_InitTypeDef sConfigOC = {0};

  /* USER CODE BEGIN TIM4_Init 1 */

  /* USER CODE END TIM4_Init 1 */
  htim4.Instance = TIM4;
  htim4.Init.Prescaler = 639;
  htim4.Init.CounterMode = TIM_COUNTERMODE_UP;
  htim4.Init.Period = 100-1;
  htim4.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
  htim4.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
  if (HAL_TIM_Base_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }
  sClockSourceConfig.ClockSource = TIM_CLOCKSOURCE_INTERNAL;
  if (HAL_TIM_ConfigClockSource(&htim4, &sClockSourceConfig) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_TIM_PWM_Init(&htim4) != HAL_OK)
  {
    Error_Handler();
  }
  sMasterConfig.MasterOutputTrigger = TIM_TRGO_RESET;
  sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;
  if (HAL_TIMEx_MasterConfigSynchronization(&htim4, &sMasterConfig) != HAL_OK)
  {
    Error_Handler();
  }
  sConfigOC.OCMode = TIM_OCMODE_PWM1;
  sConfigOC.Pulse = 0;
  sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
  sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
  if (HAL_TIM_PWM_ConfigChannel(&htim4, &sConfigOC, TIM_CHANNEL_1) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN TIM4_Init 2 */

  /* USER CODE END TIM4_Init 2 */
  HAL_TIM_MspPostInit(&htim4);

}

/**
  * @brief UART4 Initialization Function
  * @param None
  * @retval None
  */
static void MX_UART4_Init(void)
{

  /* USER CODE BEGIN UART4_Init 0 */

  /* USER CODE END UART4_Init 0 */

  /* USER CODE BEGIN UART4_Init 1 */

  /* USER CODE END UART4_Init 1 */
  huart4.Instance = UART4;
  huart4.Init.BaudRate = 115200;
  huart4.Init.WordLength = UART_WORDLENGTH_8B;
  huart4.Init.StopBits = UART_STOPBITS_1;
  huart4.Init.Parity = UART_PARITY_NONE;
  huart4.Init.Mode = UART_MODE_TX_RX;
  huart4.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart4.Init.OverSampling = UART_OVERSAMPLING_16;
  huart4.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;
  huart4.Init.ClockPrescaler = UART_PRESCALER_DIV1;
  huart4.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;
  if (HAL_UART_Init(&huart4) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetTxFifoThreshold(&huart4, UART_TXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_SetRxFifoThreshold(&huart4, UART_RXFIFO_THRESHOLD_1_8) != HAL_OK)
  {
    Error_Handler();
  }
  if (HAL_UARTEx_DisableFifoMode(&huart4) != HAL_OK)
  {
    Error_Handler();
  }
  /* USER CODE BEGIN UART4_Init 2 */

  /* USER CODE END UART4_Init 2 */

}

/**
  * @brief GPIO Initialization Function
  * @param None
  * @retval None
  */
static void MX_GPIO_Init(void)
{
  GPIO_InitTypeDef GPIO_InitStruct = {0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOF_CLK_ENABLE();
  __HAL_RCC_GPIOC_CLK_ENABLE();
  __HAL_RCC_GPIOI_CLK_ENABLE();
  __HAL_RCC_GPIOG_CLK_ENABLE();
  __HAL_RCC_GPIOB_CLK_ENABLE();
  __HAL_RCC_GPIOE_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1|GPIO_PIN_6, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);

  /*Configure GPIO pins : PF1 PF6 */
  GPIO_InitStruct.Pin = GPIO_PIN_1|GPIO_PIN_6;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOF, &GPIO_InitStruct);

  /*Configure GPIO pin : PC7 */
  GPIO_InitStruct.Pin = GPIO_PIN_7;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOC, &GPIO_InitStruct);

  /*Configure GPIO pins : PI11 PI10 */
  GPIO_InitStruct.Pin = GPIO_PIN_11|GPIO_PIN_10;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_LOW;
  HAL_GPIO_Init(GPIOI, &GPIO_InitStruct);

  /*Configure GPIO pins : PG2 PG0 PG1 */
  GPIO_InitStruct.Pin = GPIO_PIN_2|GPIO_PIN_0|GPIO_PIN_1;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(GPIOG, &GPIO_InitStruct);

  /*Configure GPIO pin : PE9 */
  GPIO_InitStruct.Pin = GPIO_PIN_9;
  GPIO_InitStruct.Mode = GPIO_MODE_IT_FALLING;
  GPIO_InitStruct.Pull = GPIO_PULLUP;
  HAL_GPIO_Init(GPIOE, &GPIO_InitStruct);

  /* EXTI interrupt init*/
  HAL_NVIC_SetPriority(EXTI0_IRQn, 3, 0);
  HAL_NVIC_EnableIRQ(EXTI0_IRQn);

  HAL_NVIC_SetPriority(EXTI1_IRQn, 3, 0);
  HAL_NVIC_EnableIRQ(EXTI1_IRQn);

  HAL_NVIC_SetPriority(EXTI2_IRQn, 3, 0);
  HAL_NVIC_EnableIRQ(EXTI2_IRQn);

  HAL_NVIC_SetPriority(EXTI9_IRQn, 2, 0);
  HAL_NVIC_EnableIRQ(EXTI9_IRQn);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/**
  * @brief  This function is executed in case of error occurrence.
  * @retval None
  */
void Error_Handler(void)
{
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */
  __disable_irq();
  while (1)
  {
  }
  /* USER CODE END Error_Handler_Debug */
}

#ifdef  USE_FULL_ASSERT
/**
  * @brief  Reports the name of the source file and the source line number
  *         where the assert_param error has occurred.
  * @param  file: pointer to the source file name
  * @param  line: assert_param error line source number
  * @retval None
  */
void assert_failed(uint8_t *file, uint32_t line)
{
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

stm32mp1xx_it.c

/* USER CODE BEGIN Header */
/**
  ******************************************************************************
  * @file    stm32mp1xx_it.c
  * @brief   Interrupt Service Routines.
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; Copyright (c) 2024 STMicroelectronics.
  * All rights reserved.</center></h2>
  *
  * This software component is licensed by ST under BSD 3-Clause license,
  * the "License"; You may not use this file except in compliance with the
  * License. You may obtain a copy of the License at:
  *                        opensource.org/licenses/BSD-3-Clause
  *
  ******************************************************************************
  */
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"
#include "stm32mp1xx_it.h"
/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */
/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN TD */
int mode = 0;	//模式
extern void uart4_idle_func(void);
extern void smg_xians();
// 音乐盒基�?????变量
int time_100ms_cnt = 0; //0.1s计数�?????
int Beat_speed = 5;		//节拍速度,代表半个节拍需要多少个0.1s
int Beat_speed_n = 0;	//实际执行的节拍数

int Beat_num = 2;		//这个�?????个音�?????要多少个 半拍
int flag = 0; 			//当其等于 1 时,表示�?????个音结束
int EN_music = 0;				//使能信号,用于开启整个音乐盒
int list = 0;			//音乐列表
int list_max = 0;		//音乐总数
int Low_volume = 5;		//音量大小
int Low_volume_cnt = 3;	//音量大小增加�?????
int music_speed_i = 0; 	//音乐播放速度模式保存
// 音乐播放速度控制函数
int music_speed_kz(int i){
	//倍数计算公式 1 + (1 - (新的节拍速度 / 原来的节拍�?�度))
				switch(i){
				case 0:{
					Beat_speed = 5;	//0.5s半个节拍,正�?????+�??????�度
					break;
				}
				case 1:{
					Beat_speed = 4;	//1.2倍数
					break;
				}
				case 2:{
					Beat_speed = 3;	//约等�??????? 1.5倍数
					break;
				}
				case 3:{
					Beat_speed = 1;	//约等�??????? 2 倍数
					break;
				}
				case 4:{
					Beat_speed = 6;	//约等�??????? 0.8 倍数
					break;
				}
				case 5:{
					Beat_speed = 7;	//约等�??????? 0.6 倍数
					break;
				}
				default:{
					Beat_speed = 5;	//0.5s半个节拍,正常�?�度
					i=0;
					break;
				}
				}
	return i;
}

//数码管闹�????
int smg_number[10] = {0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xE0,0xFE,0xF6};
int buf[8] = {0};

//闹钟保存数组
int alarm_clock_array[20][4] = {0};
int alarm_clock_array_cnt = 0;
//实时时钟信息
int shi_shi = 0;
int shi_ge = 0;
int fen_shi = 0;
int fen_ge = 0;
int miao_shi = 0;
int miao_ge = 0;
int miao = 0;
int shi = 0;
int fen = 0;

int EN_clock = 0;//闹钟设置使能
extern int en_clock;//用于控制闹钟响铃

//闹钟设置信息
int shi_shi_clock = 0;
int shi_ge_clock = 0;
int fen_shi_clock = 0;
int fen_ge_clock = 0;
int miao_shi_clock = 0;
int miao_ge_clock = 0;
int miao_clock = 0, shi_clock = 0, fen_clock = 0;

/* USER CODE END TD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/* External variables --------------------------------------------------------*/
extern TIM_HandleTypeDef htim2;
extern TIM_HandleTypeDef htim3;
extern UART_HandleTypeDef huart4;
/* USER CODE BEGIN EV */

/* USER CODE END EV */

/******************************************************************************/
/*           Cortex-M4 Processor Interruption and Exception Handlers          */
/******************************************************************************/
/**
  * @brief This function handles Non maskable interrupt.
  */
void NMI_Handler(void)
{
  /* USER CODE BEGIN NonMaskableInt_IRQn 0 */

  /* USER CODE END NonMaskableInt_IRQn 0 */
  /* USER CODE BEGIN NonMaskableInt_IRQn 1 */
  while (1)
  {
  }
  /* USER CODE END NonMaskableInt_IRQn 1 */
}

/**
  * @brief This function handles Hard fault interrupt.
  */
void HardFault_Handler(void)
{
  /* USER CODE BEGIN HardFault_IRQn 0 */

  /* USER CODE END HardFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_HardFault_IRQn 0 */
    /* USER CODE END W1_HardFault_IRQn 0 */
  }
}

/**
  * @brief This function handles Memory management fault.
  */
void MemManage_Handler(void)
{
  /* USER CODE BEGIN MemoryManagement_IRQn 0 */

  /* USER CODE END MemoryManagement_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_MemoryManagement_IRQn 0 */
    /* USER CODE END W1_MemoryManagement_IRQn 0 */
  }
}

/**
  * @brief This function handles Pre-fetch fault, memory access fault.
  */
void BusFault_Handler(void)
{
  /* USER CODE BEGIN BusFault_IRQn 0 */

  /* USER CODE END BusFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_BusFault_IRQn 0 */
    /* USER CODE END W1_BusFault_IRQn 0 */
  }
}

/**
  * @brief This function handles Undefined instruction or illegal state.
  */
void UsageFault_Handler(void)
{
  /* USER CODE BEGIN UsageFault_IRQn 0 */

  /* USER CODE END UsageFault_IRQn 0 */
  while (1)
  {
    /* USER CODE BEGIN W1_UsageFault_IRQn 0 */
    /* USER CODE END W1_UsageFault_IRQn 0 */
  }
}

/**
  * @brief This function handles System service call via SWI instruction.
  */
void SVC_Handler(void)
{
  /* USER CODE BEGIN SVCall_IRQn 0 */

  /* USER CODE END SVCall_IRQn 0 */
  /* USER CODE BEGIN SVCall_IRQn 1 */

  /* USER CODE END SVCall_IRQn 1 */
}

/**
  * @brief This function handles Debug monitor.
  */
void DebugMon_Handler(void)
{
  /* USER CODE BEGIN DebugMonitor_IRQn 0 */

  /* USER CODE END DebugMonitor_IRQn 0 */
  /* USER CODE BEGIN DebugMonitor_IRQn 1 */

  /* USER CODE END DebugMonitor_IRQn 1 */
}

/**
  * @brief This function handles Pendable request for system service.
  */
void PendSV_Handler(void)
{
  /* USER CODE BEGIN PendSV_IRQn 0 */

  /* USER CODE END PendSV_IRQn 0 */
  /* USER CODE BEGIN PendSV_IRQn 1 */

  /* USER CODE END PendSV_IRQn 1 */
}

/**
  * @brief This function handles System tick timer.
  */
void SysTick_Handler(void)
{
  /* USER CODE BEGIN SysTick_IRQn 0 */

  /* USER CODE END SysTick_IRQn 0 */
  HAL_IncTick();
  /* USER CODE BEGIN SysTick_IRQn 1 */

  /* USER CODE END SysTick_IRQn 1 */
}

/******************************************************************************/
/* STM32MP1xx Peripheral Interrupt Handlers                                    */
/* Add here the Interrupt Handlers for the used peripherals.                  */
/* For the available peripheral interrupt handler names,                      */
/* please refer to the startup file (startup_stm32mp1xx.s).                    */
/******************************************************************************/

/**
  * @brief This function handles EXTI line0 interrupt.
  */
void EXTI0_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI0_IRQn 0 */

	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_0) == 0 && mode == 0)//确保数据稳定
	{

		//每次按下解决 音量�??????? Low_volume_cnt
		Low_volume = Low_volume + Low_volume_cnt;
		if(Low_volume >= 10)
			Low_volume = 0;
	}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_0)==GPIO_PIN_RESET && mode == 1) {

		shi_clock++;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		if(shi_clock>=24)
		{
			shi_clock=0;
		}

		miao_shi_clock=miao_clock/10;
		miao_ge_clock=miao_clock%10;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		buf[0]=smg_number[shi_shi_clock];
		buf[1]=smg_number[shi_ge_clock];
		buf[3]=smg_number[fen_shi_clock];
		buf[4]=smg_number[fen_ge_clock];
		buf[6]=smg_number[miao_shi_clock];
		buf[7]=smg_number[miao_ge_clock];
		}
  /* USER CODE END EXTI0_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_0);
  /* USER CODE BEGIN EXTI0_IRQn 1 */

  /* USER CODE END EXTI0_IRQn 1 */
}

/**
  * @brief This function handles EXTI line1 interrupt.
  */
void EXTI1_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI1_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_1) == 0 && mode == 0)//确保数据稳定
		{
		music_speed_i++;
		music_speed_i = music_speed_kz(music_speed_i);
		}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_1)==GPIO_PIN_RESET && mode == 1) {
		fen_clock++;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		if(fen_clock>=60)
		{
			fen_clock=0;
			shi_clock++;
			fen_shi_clock=fen_clock/10;
			fen_ge_clock=fen_clock%10;
			shi_shi_clock=shi_clock/10;
			shi_ge_clock=shi_clock%10;
			if(shi_clock>=24)
			{
				shi_clock=0;
			}
		}

		miao_shi_clock=miao_clock/10;
		miao_ge_clock=miao_clock%10;
		fen_shi_clock=fen_clock/10;
		fen_ge_clock=fen_clock%10;
		shi_shi_clock=shi_clock/10;
		shi_ge_clock=shi_clock%10;
		buf[0]=smg_number[shi_shi_clock];
		buf[1]=smg_number[shi_ge_clock];
		buf[3]=smg_number[fen_shi_clock];
		buf[4]=smg_number[fen_ge_clock];
		buf[6]=smg_number[miao_shi_clock];
		buf[7]=smg_number[miao_ge_clock];
		}
  /* USER CODE END EXTI1_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_1);
  /* USER CODE BEGIN EXTI1_IRQn 1 */

  /* USER CODE END EXTI1_IRQn 1 */
}

/**
  * @brief This function handles EXTI line2 interrupt.
  */
void EXTI2_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI2_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOG, GPIO_PIN_2) == 0 && mode == 0)//确保数据稳定
		{
			list++;
			if(list > list_max){
				list = 0;
			}
		}

	if(HAL_GPIO_ReadPin(GPIOG,GPIO_PIN_2)==GPIO_PIN_RESET && mode == 1) {
			//在此处关闭闹�????
			en_clock = 0;
		}
  /* USER CODE END EXTI2_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_2);
  /* USER CODE BEGIN EXTI2_IRQn 1 */

  /* USER CODE END EXTI2_IRQn 1 */
}

/**
  * @brief This function handles TIM2 global interrupt.
  */
void TIM2_IRQHandler(void)
{
  /* USER CODE BEGIN TIM2_IRQn 0 */
	if(EN_music == 1)
		time_100ms_cnt++;
	else
		time_100ms_cnt = time_100ms_cnt;	//其余状�?�不计数

	if(time_100ms_cnt >= Beat_speed_n * Beat_num){	//这个音节结束
		time_100ms_cnt = 0;
		flag = 1;	//发�?�音节结束信�???????
	}


	//数码�????
	static int smg_time_100ms = 0;
	smg_time_100ms++;
	if(smg_time_100ms>=10){
		miao++;
		smg_time_100ms = 0;
	}


	if (miao>=60)
	{
		miao=0;
		fen++;
		if(fen>=60)
		{
			fen=0;
			shi++;
			if(shi>=24)
			{
				shi=0;
			}
		}
	}


	if(miao >= 60){
		miao = miao-60;
		fen++;
	}
	if(fen>=60){
		fen = fen-60;
		shi ++;
	}
	if(shi>= 24){
		shi = shi -24;

	}


	miao_shi=miao/10;
	miao_ge=miao%10;

	fen_shi=fen/10;
	fen_ge=fen%10;

	shi_shi=shi/10;
	shi_ge=shi%10;


	if(EN_clock == 0){
	buf[0]=smg_number[shi_shi];
	buf[1]=smg_number[shi_ge];
	buf[3]=smg_number[fen_shi];
	buf[4]=smg_number[fen_ge];
	buf[6]=smg_number[miao_shi];
	buf[7]=smg_number[miao_ge];
	  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_RESET);
	  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_RESET);
	  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_RESET);
	}
	else{
		  HAL_GPIO_WritePin(GPIOF, GPIO_PIN_1, GPIO_PIN_SET);
		  //HAL_GPIO_WritePin(GPIOC, GPIO_PIN_7, GPIO_PIN_SET);
		  //HAL_GPIO_WritePin(GPIOI, GPIO_PIN_11|GPIO_PIN_10, GPIO_PIN_SET);
	}

  /* USER CODE END TIM2_IRQn 0 */
  HAL_TIM_IRQHandler(&htim2);
  /* USER CODE BEGIN TIM2_IRQn 1 */

  /* USER CODE END TIM2_IRQn 1 */
}

/**
  * @brief This function handles TIM3 global interrupt.
  */
void TIM3_IRQHandler(void)
{
  /* USER CODE BEGIN TIM3_IRQn 0 */
	smg_xians();
  /* USER CODE END TIM3_IRQn 0 */
  HAL_TIM_IRQHandler(&htim3);
  /* USER CODE BEGIN TIM3_IRQn 1 */

  /* USER CODE END TIM3_IRQn 1 */
}

/**
  * @brief This function handles UART4 global interrupt.
  */
void UART4_IRQHandler(void)
{
  /* USER CODE BEGIN UART4_IRQn 0 */
	uart4_idle_func();

  /* USER CODE END UART4_IRQn 0 */
  HAL_UART_IRQHandler(&huart4);
  /* USER CODE BEGIN UART4_IRQn 1 */

  /* USER CODE END UART4_IRQn 1 */
}

/**
  * @brief This function handles EXTI line9 interrupt.
  */
void EXTI9_IRQHandler(void)
{
  /* USER CODE BEGIN EXTI9_IRQn 0 */
	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 0){//确保数据稳定
		EN_music = !EN_music;
	}

	if(HAL_GPIO_ReadPin(GPIOE, GPIO_PIN_9) == 0 && mode == 1 ){//确保数据稳定
		if(EN_clock == 1){
			//闹钟设置成功
			alarm_clock_array[alarm_clock_array_cnt][0] = shi_clock;
			alarm_clock_array[alarm_clock_array_cnt][1] = fen_clock;
			alarm_clock_array[alarm_clock_array_cnt][2] = miao_clock;
			alarm_clock_array[alarm_clock_array_cnt][3] = 3;	//默认播放第三首音�????
			alarm_clock_array_cnt++;
			if(alarm_clock_array_cnt >= 20) alarm_clock_array_cnt = 0;
			EN_clock = 0;
		}
		else if(EN_clock == 0){
			//设置闹钟
			shi_shi_clock = shi_shi;
			shi_ge_clock = shi_ge;
			fen_shi_clock = fen_shi;
			fen_ge_clock = fen_ge;
			miao_shi_clock = 0;
			miao_ge_clock = 0;
			miao_clock = 0;
			shi_clock = shi;
			fen_clock = fen;
			EN_clock = 1;
		}
	}






  /* USER CODE END EXTI9_IRQn 0 */
  HAL_GPIO_EXTI_IRQHandler(GPIO_PIN_9);
  /* USER CODE BEGIN EXTI9_IRQn 1 */

  /* USER CODE END EXTI9_IRQn 1 */
}

/**
  * @brief This function handles RCC wake-up interrupt.
  */
void RCC_WAKEUP_IRQHandler(void)
{
  /* USER CODE BEGIN RCC_WAKEUP_IRQn 0 */

  /* USER CODE END RCC_WAKEUP_IRQn 0 */
  HAL_RCC_WAKEUP_IRQHandler();
  /* USER CODE BEGIN RCC_WAKEUP_IRQn 1 */

  /* USER CODE END RCC_WAKEUP_IRQn 1 */
}

/* USER CODE BEGIN 1 */

/* USER CODE END 1 */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

        串口指令集

mode = music
mode = clock
mode = sensor

music volume increase
music volume reduction
music speed increase
music speed reduction
music next song
music previous song
music start
music stop

clock shi = 
clock fen = 
clock miao = 
clock delay shi = 
clock delay fen = 
clock delay miao = 

time shi = ;fen = ;miao = 
clock delay list
clock stop list = 
clock stop stop

sensor  humidity_min = 
sensor  temperature_max = 
sensor temperature start
sensor humidity start
sensor temperature stop
sensor humidity stop
sensor list
sensor Temp_Code RH_Code

六、部分效果展示

STM32杂交版

七、总结

        本设计是一个高度集成的基于STM32MP157A单片机的多功能系统,通过整合蜂鸣器、数码管、点阵屏、温湿度传感器、LED灯、按键等多种模块,实现了丰富的交互与功能。系统利用STM32CUBEIDE作为开发平台,充分发挥了STM32MP157A单片机的高性能与灵活性,展现了其在嵌入式系统设计中的广泛应用潜力。

设计总结:

  1. 模块化设计:本设计采用了模块化设计思路,将不同功能模块(如闹钟、音乐盒、温湿度监测)独立设计后整合在一起,不仅提高了系统的可维护性和可扩展性,还使得各个模块的功能实现更加清晰明了。

  2. 灵活的模式切换:通过串口通信实现不同模式(闹钟、音乐盒、温湿度监测)之间的灵活切换,使得用户可以根据需要轻松选择所需功能,提高了系统的用户友好性和实用性。

  3. 多样化的显示与交互:点阵屏在不同模式下显示不同的汉字(如“钟”、“音”、“传”),直观展示了当前的工作模式,增强了用户体验。同时,按键和串口控制相结合的方式,使得用户可以通过多种途径对系统进行操作,如调节音乐播放速度、音量、切换歌曲,调整闹钟时间、设置多个闹钟等,极大地丰富了系统的交互方式。

  4. 温湿度监测与调节:系统集成了温湿度传感器,能够实时监测环境温湿度,并通过串口调节温湿度上下限,当温湿度超出设定范围时,通过LED灯进行边界提示,实现了对环境的智能监测与调节。

  5. 高效的开发平台:采用STM32CUBEIDE作为开发平台,利用其强大的代码编辑、编译、调试功能,以及丰富的库函数和示例项目,极大地提高了开发效率,降低了开发难度。

  6. 综合应用能力的展现:本设计不仅展示了STM32MP157A单片机在嵌入式系统设计中的强大功能,还体现了设计者在硬件选型、电路设计、软件编程、系统调试等方面的综合应用能力。

综上所述,本设计是一个集多功能性、灵活性、用户友好性于一体的嵌入式系统,充分展示了STM32MP157A单片机在复杂系统设计中的广泛应用前景和潜力。通过本设计的实施,不仅加深了对嵌入式系统设计的理解,还提升了解决实际问题的能力。

参考资料:

        1. STM32简易音乐播放器(HAL库)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1919779.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux C语言基础 day9

目录 思维导图 学习目标&#xff1a; 学习内容&#xff1a; 1. 值传递与地址传递&#xff08;非常重要&#xff09; 1.1 值传递 1.2 地址传递 2. 递归函数 2.1 递归的概念 2.2 递归条件 2.3 递归思想 3. 指针 3.1 指针相关概念 3.2 指针变量的定义 3.2.1. 定义格…

初识MVVM分层思想——05

1.MVVM是什么&#xff1f; M &#xff1a;model&#xff08;模型/数据&#xff09; V : view&#xff08;试图&#xff09; VM &#xff1a;ViewModel &#xff08;试图模型&#xff09; &#xff1a; VM 是MVVM 中的核心部分。&#xff08;它起到一个核心的非常重要的作用&…

mac下mysql无法登陆的问题

用如下命令登录出现错误。 sudo mysql.server start解决方案 使用如下命令登录 sudo /usr/local/MySQL/support-files/mysql.server start

【C++基础】初识C++(1)

目录 一、认识C 1.1 C 相关概念 1.2 C的发展 1.3 C的关键字 1.4 第一个程序 二、命名空间 2.1 namespace的定义 2.2 命名空间的使用 三、C输入和输出 四、缺省函数 五、函数重载 一、认识C 1.1 C 相关概念 1983年&#xff0c;Bjarne Stroustrup在C语⾔的基础上…

Python 视频的色彩转换

这篇教学会介绍使用OpenCV 的cvtcolor() 方法&#xff0c;将视频的色彩模型从RGB 转换为灰阶、HLS、HSV...等。 因为程式中的OpenCV 会需要使用镜头或GPU&#xff0c;所以请使用本机环境( 参考&#xff1a;使用Python 虚拟环境) 或使用Anaconda Jupyter 进行实作( 参考&#x…

BMS电池管理系统 — 1 什么是BMS

目录 1 储能系统组成 1.1 储能电池结构 1.2 储能集装箱组成 2 BMS系统组成 3 BMS功能 3.1 SOC荷电状态估计 3.2 SOH估计 3.3 主动均衡与被动均衡 3.4 电池热管理 4 BMS架构 4.1 集中式BMS 4.2 分布式BMS 参考论文 1 储能系统组成 1.1 储能电池结构 电芯&#xf…

docker(六)--创建镜像

六、创建镜像 1.创建镜像两种方式 方式1&#xff1a; 更新镜像 docker commit 方式2&#xff1a;构建镜像 docker build 2.更新镜像 1&#xff09;用法 docker commit -m“描述信息” -a作者 容器id或者容器名 镜像名:tag 2&#xff09;步骤 ①根据镜像运行容器 ②进入容…

PHP将两张图片合成一张图片代码实例(源代码)

使用PHP将两张图片合成一张图片可以通过GD库来实现。下面是一个示例代码&#xff0c;展示如何将两张图片合成一张图片&#xff1a; 加载两张图片。获取每张图片的宽度和高度。创建一个新的空白图片&#xff0c;其宽度是两张图片宽度的和&#xff0c;高度是两张图片中较大的高度…

酒店民宿小程序:酒店民宿便利预订,提高收益!

在旅游业发展旺盛时期&#xff0c;酒店民宿也得到了快速发展。随着移动互联网的发展&#xff0c;人们逐渐在手机上预订酒店民宿&#xff0c;这给酒店民宿小程序的发展提供了用户基础&#xff0c;为大众出行带来了更多的便利。 酒店民宿小程序是一个基于微信平台的应用程序&…

PHP计件工资系统小程序源码

解锁高效管理新姿势&#xff01;全面了解计件工资系统 &#x1f525; 开篇&#xff1a;为什么计件工资系统成为企业新宠&#xff1f; 在这个效率至上的时代&#xff0c;企业如何精准激励员工&#xff0c;提升生产力成为了一大挑战。计件工资系统应运而生&#xff0c;它以其公…

Python大数据分析——K近邻模型(KNN)

Python大数据分析——K近邻模型 数学部分模型思想模型步骤距离度量指标欧氏距离曼哈顿距离余弦相似度 K值选择 代码部分函数示例1——知识掌握程度示例2——预测发电量 数学部分 模型思想 如图所示&#xff0c;模型的本质就是寻找k个最近样本&#xff0c;然后基于最近样本做“…

qml 实现一个带动画的switch 按钮

一.效果图 》 二.qml 代码 import QtQuick 2.12 import QtQuick.Controls 2.12Switch {id: controlimplicitWidth: 42implicitHeight: 20indicator: Rectangle {id: bkRectangleanchors.fill: parentx: control.leftPaddingy: parent.height / 2 - height / 2radius: height …

C语言有哪些特点?

C语言是一种结构化语言&#xff0c;它有着清晰的层次&#xff0c;可按照模块的方式对程序进行编写&#xff0c;十分有利于程序的调试&#xff0c;且c语言的处理和表现能力都非常的强大&#xff0c;依靠非常全面的运算符和多样的数据类型&#xff0c;可以轻易完成各种数据结构的…

Linux系统日志管理服务和配置

文章目录 Linux系统日志服务rsyslog日志分类rsyslog相关文件/var/log/message重启失败分析 /var/log/secure自定义日志输出路径1.修改sshd_config配置文件2.修改rsyslog.conf3.重启服务 常见日志文件日志管理工具journalctl选项说明journalctl用法示例 日志分析实战host无法解析…

qt creator中右边的的类和对象如何显示出来

qt creator中右边的的类和对象如何显示出来&#xff1f; 解决方法&#xff1a; 鼠标右键&#xff0c;重置为默认布局。

未来互联网的新篇章:深度解析Web3技术

随着技术的不断演进&#xff0c;Web3正逐渐成为引领未来互联网发展的关键驱动力。本文将深入探讨Web3技术的核心概念、关键特征以及其对未来互联网生态的深远影响&#xff0c;旨在帮助读者全面理解和把握这一新兴技术的发展方向和潜力。 1. Web3的基本概念和演进 Web3并非简单…

【AI大模型】通义灵码的部署与使用

【AI大模型】通义灵码的部署与使用 目前已支持&#xff1a; JetBrains IDEsIDE 版本&#xff1a;IntelliJ IDEA、PyCharm、GoLand、WebStorm、Android Studio 等 2020.3 及以上操作系统&#xff1a;Windows 7 及以上、macOS、LinuxVisual Studio CodeIDE 版本&#xff1a;1.68.…

minio在redhat7.9上面的单节点单驱动离线安装(docker)

问题 最近需要在红帽上面离线安装minio&#xff0c;并且还是要离线安装到服务器中的Docker里面去。 检查服务器磁盘 # lsblk -f NAME FSTYPE LABEL UUID MOUNTPOINT sda ├─sda1 xfs xxxxsx-xxx-xxx…

软链接node_modules

公司项目很多微应用的子项目公用同一套模板&#xff0c;也就会使用同一个node_modules 1.先创建3个同样的项目,并安装一个其中的一个node_modules给他丢到外边 2.win r -------> cmd --------> ctrlshift enter(已管理员身份打开cmd) 3.在窗口分别执行以下代码…

【手撸RPC框架】zookeeper入门(安装+常用命令)

&#x1f43c;作者简介&#xff1a;一名大三在校生&#x1f38b; 空有想法&#xff0c;没有实践&#xff0c;难成大事 专栏前言&#xff1a;探索RPC框架的奥秘 简介&#xff1a;在现代软件开发中&#xff0c;随着微服务架构的普及&#xff0c;远程过程调用&#xff08;RPC&…