对于这个题,如何处理同一个方向的问题,且对于同一组的如果间隔太大如何实现离散化
#include<bits/stdc++.h>
using namespace std;
#define int long long
typedef long long ll;
map<pair<int,int>,vector<pair<ll,ll>>> mp; // 注意里面是用vector装着
signed main(){
int n;
cin >> n;
int ans = 0;
int num = 0;
for(int i=1;i<=n;i++){
int a,b,c;
cin >> a >> b >> c;
int d= abs(__gcd(a,b)); // 请注意这个 gcd 是两个下划线
// 且要取绝对值
mp[{a/d,b/d}].push_back({a*a+b*b,c});
ans += c;
}
for(auto u:mp){
vector<pair<ll,ll>> t = u.second;
sort(t.begin(),t.end());
int len = t.size();
for(int i=0;i<len;i++){
if(t[i].second!=1) num++;
else if((i+1)==len || t[i+1].second!=1) num++;
}
}
cout << ans << " " << num;
return 0;
}
#include<bits/stdc++.h>
using namespace std;
const int N = (int)1e3 + 5;
int e[N * N], ne[N * N], h[N], idx = 0;
int energy[N * N], va[N * N];
int vis[N];
int di[N];
void add(int a, int b, int ener, int value) {
e[++idx] = b;
ne[idx] = h[a]; h[a] = idx;
energy[idx] = ener, va[idx] = value;
}
int n, m;
int maxdistance = 0xfffffff;
int start; // 设置为全局变量
int dikj() {
priority_queue<pair<int, int>> q;
int ma = 0;
//vis[start] = 1; // 记录一下
for (int i = 0; i <= n; i++) vis[i] = 0,di[i] = 0xffffff;
//vis[start] = 1;
q.push({ 0,start });
while (q.size()) {
int dis = -q.top().first, node = q.top().second;
q.pop();
if (vis[node]) continue;
vis[node] = 1;
for (int i = h[node]; i != -1; i = ne[i]) {
int to = e[i];
//if (vis[to]) continue;
//vis[to] = 1;
int newdis = energy[i] + dis; // 这是新的距离
if (newdis < di[to]) {
di[to] = newdis;
q.push({ -newdis, to });
}
/* ma = max(ma, newdis);*/
}
}
for (int i = 1; i <= n; i++) {
if (di[i] == 0xffffff) continue;
ma = max(ma, di[i]);
}
return ma;
}
int pre[N];// 记录前缀
int ju[N];
void solve(int start) {
for (int i = 1; i <= n; i++) {
pre[i] = i, vis[i] = 0, di[i] = 0xffffff;
}
priority_queue<pair<int, int>> q;
q.push({ 0,start });
//vis[start] = 1;
while (q.size()) {
int dis = -q.top().first, node = q.top().second;
q.pop();
//
if (vis[node]) continue;
vis[node] = 1;
for (int i = h[node]; i != -1; i = ne[i]) {
int to = e[i];
//if (vis[to]) continue;
//vis[to] = 1;
int t = dis + energy[i];
if (t < di[to]) {
di[to] = t; pre[to] = node;
ju[to] = ju[node] + va[i];
q.push({ -t,to });
//cout << "1 to: " << to << " node " << node << endl;
}
else if (t == di[to]) {
int u = ju[node] + va[i];
if (u > ju[to]) {
di[to] = t; pre[to] = node;
ju[to] = ju[node] + va[i];
//q.push({ -t,to });
//cout << "2 to: " << to << " node " << node << endl;
}
}
}
}
}
void print(int s, int t) {
if (s == t) {
printf("%d", s);
return;
}
print(s, pre[t]);
printf("->%d", t);
}
int main() {
cin >> n >> m;
memset(h, -1, sizeof h);
for (int i = 1; i <= m; i++) {
int a, b, c, d;
cin >> a >> b >> c >> d;
add(a, b, c, d);
add(b, a, c, d);
}
int kaishi;
for (int i = 1; i <= n; i++) {
start = i;
int d = dikj();
//cout << d << endl;
if (d < maxdistance) {
kaishi = start;
maxdistance = d;
}
}
cout << kaishi << endl;
solve(kaishi);
//int o = kaishi;
int t;
cin >> t;
//for (int i = 1; i <= n; i++) {
// cout << pre[i] << endl;
//}
di[kaishi] = ju[kaishi] =0 ;
for (int i = 1; i <= t; i++) {
int a;
cin >> a;
print(kaishi,a);
cout << endl;
cout << di[a] << " " << ju[a] << endl;
}
}