【JavaEE】网络编程——UDP

news2024/9/9 7:28:13

在这里插入图片描述
🤡🤡🤡个人主页🤡🤡🤡
🤡🤡🤡JavaEE专栏🤡🤡🤡

文章目录

  • 1.数据报套接字(UDP)
    • 1.1特点
    • 1.2编码
      • 1.2.1DatagramSocket
      • 1.2.2DatagramPacket
      • 1.2.3实现一个UDP(24*7)回显服务器
      • 1.2.4实现一个UDP客户端
      • 1.2.5实现一个UDP字典翻译服务器
  • 2.客户端与服务器的流程

1.数据报套接字(UDP)

1.1特点

  1. 无连接:数据在传输前无需建立专用通道,每一个数据包独立发送,并自行选择路径到达目的地,好比发送信息,你只要发送了信息就行,不需要对方接收。
  2. 不可靠传输:在传输数据的时候,不需要关注对方是否收到了,发送了就可以。
  3. 面向数据流:传输数据的基本单位是一个个的UDP数据报,一次读写,只能读写一个完整的UDP数据报
  4. 全双工:一条链路中,能够进行双向通信。

1.2编码

Socket api都是系统提供的,不同的系统提供的api是不一样的,但是java中对于系统的这些api进一步封装了。
UDP中的socket api 重点是两个类:DatagramSocket 和DatagramPacket

1.2.1DatagramSocket

这个类的作用可以看作"操作网卡"的遥控器,也就是对网卡进行读写操作,可以理解成像文件那样读写的形式。
提供了几个方法:
在这里插入图片描述

1.2.2DatagramPacket

这个类是描述UDP数据报,一个DatagramPacket对象相当于一个UDP数据报,一次发送一次接收就是传输了一个DatagramPacket对象。

1.2.3实现一个UDP(24*7)回显服务器

回显(Echo):客户端给服务器发送不同的请求,服务器就会返回不同的响应。但在此处回显就是客户端给服务器请求啥,服务器就响应啥,不做任何计算和业务逻辑。

public class udpEchoServer {
    public DatagramSocket socket = null;
    public udpEchoServer(int port) throws SocketException {
        socket = new DatagramSocket(port);
    }
    public void  start() throws IOException {
        System.out.println("服务器启动!!!");
        while (true) {
            //接受客户端请求
            DatagramPacket requestPacket = new DatagramPacket(new byte[4096],4096);
            socket.receive(requestPacket);
            //为了更好处理数据并方便打印,将接受的数据转化为字符串操作
            String request = new String(requestPacket.getData(),0,requestPacket.getLength());
            //处理客户端的请求(算术计算或者业务逻辑)
            String response = this.process(request);
            //将处理完的请求返还给客户端
            DatagramPacket resposePacket = new DatagramPacket(response.getBytes(),0,response.getBytes().length,
                    requestPacket.getSocketAddress());
            socket.send(resposePacket);
            //打印客户端的ip地址端口号和接收客户端的数据以及处理完客户端后的数据
            System.out.printf("[%s:%d] req = %s,resp = %s\n",requestPacket.getAddress(),requestPacket.getPort(),
                    request,response);
        }
    }
    public String process(String request) {
        return request;
    }

    public static void main(String[] args) throws IOException {
        udpEchoServer udpEchoServer = new udpEchoServer(9999);
        udpEchoServer.start();
    }
}

在这里插入图片描述
DatagramPacket对象表示的就是一个数据报,UDP数据报是由报头和载荷组成的,报头中的有IP地址和端口号这些都是DatagramPacket类的属性,而载荷这个类没有提供,所以需要程序猿自己去提供,所以就像和尚化缘一样,你需要自己提供一个化缘的碗,然后各家将食物放到碗中,由于数据报的本质就是一个二进制数据,所以我提供了一个字节数组来作为这个载荷存储数据。
在这里插入图片描述
从客户端接收过来的数据,经过服务器处理完之后要返还给客户端,所以需要在创建一个DatagramPacket对象来存储由服务器处理完之后的数据,再服务器发送给客户端。此时的DatagramPacket对象就不需要提供一个空白的空间,将处理完的数据放入这个对象就行,由于在接收数据的时候就记录了客户端的ip地址和端口号,所以在发送给客户端的时候只需要通过requestPacket.getSocketAddress()来获取客户端的IP地址和端口号。
在这里插入图片描述
由于服务器是固定的,所以可以直接自己去设置端口号,当服务器启动的时候端口号就被创建了。
为什么需要端口号IP地址?
要实现双方通信成功,必须要有这个四个核心指标:
源端口,源IP,目的端口,目的IP
通过这四个核心指标就可以实现双方网络通信,此处没有服务器的IP地址,是因为客户端和服务器在同一个主机上。我们可以用一个IP来表示172.0.0.1也称环回IP。

1.2.4实现一个UDP客户端

public class udpEchoClient {
    private DatagramSocket socket = null;
    private String serverIp;
    private int serverProt;
    public  udpEchoClient(String serverIp, int serverProt) throws SocketException {
        socket = new DatagramSocket();
        this.serverIp = serverIp;
        this.serverProt = serverProt;
    }
    public void start() throws IOException {
        System.out.println("客户端启动!");
        //1.从控制台获取字符串
        Scanner scanner = new Scanner(System.in);
        while(true) {
            System.out.println("请输入要发送的请求: ");
            String request = scanner.nextLine();
            //2.将输入的字符串发送给服务器,还要将发送的目标确定,IP和端口号
            DatagramPacket requestPacket = new DatagramPacket(request.getBytes(), 0, request.getBytes().length,
                    InetAddress.getByName(serverIp), serverProt);
            socket.send(requestPacket);
            //3.从服务器读取到经过处理的响应
            DatagramPacket responsePackt = new DatagramPacket(new byte[4096], 4096);
            socket.receive(responsePackt);
            //将响应打印在控制台
            String response = new String(responsePackt.getData(), 0, responsePackt.getLength());
            System.out.println(response);
        }
    }
    public static void main(String[] args) throws IOException {
        udpEchoClient udpEchoClient = new udpEchoClient("127.0.0.1",9999);
        udpEchoClient.start();
    }
}

在这里插入图片描述
从控制台接收到的字符串,requestPacket对象获取到字符串对象的引用以及长度,还有自己的IP和Prot,然后通过socket的send方法发送到服务器上。
在这里插入图片描述
从服务器接收的响应,需要创建一个responsePackt对象,并且提前创建好一个空白的字节数组来接收从服务器接收的响应。
对一些方法区分一下:
在对方法区分前,我们需要理解字节,字符,编码形式的概念
字节与字符本质上都是二进制,就是0101这种数据,因为计算机只认识0101。
字节:字节是计算机存储数据的基本单位,1个字节就是8个bit,每个位可以是0或1,表示一个字节可以表示256个不同的值.
字符:字符是表示文本信息的基本单位,根据不同的编码形式,就会有一个字符对应多少个字节就有所不同,通过编码形式可以将字符转化为字节再通过字节来表示数据,传输数据和存储数据。
编码形式:

  1. ASCII码:用于表示英文字符。它使用7位来表示128个字符(包括大小写字母、数字、标点符号和一些控制字符),就是不支持中文字符,这里就是一个字符对应一个字节
  2. Unicode(UTF8):UTF-8是一种变长的编码形式,包括全球所有书写系统的字符,兼容ASCII字符集,并且支持中文字符,包括全球所有书写系统的字符,一个字符对应1-4字节。
  3. GBK:采用变长编码,主要用于中文字符编码,一个字符对应1-2字节

方法区别一下:

  1. getBytes():得到字节数组的引用,对象是字符,这里就是将字符转化为字节来存储数据
  2. getBytes().length:得到字节数组的长度,对象是字符
  3. getData():得到的是由字符组成的字符串的引用,对象是字节,这里就是将字节转化为字符来使用数据
  4. getLength():得到的字符串的长度,对象是字节
  5. getAddress():获取IP地址,对象是DatagramPacket
  6. getPort():获取Prot端口号,对象是DatagramPacket
  7. getSocketAddress():获取到IP地址和Prot端口号,对象是DatagramPacket
  8. InetAddress.getByName():这个方法可以解析主机名并返回该主机名的 IP 地址,或者直接返回给定 IP 地址的 InetAddress 对象,得到的InetAddress 对象传给服务器,服务器通过得到这个对象就可以解析出IP地址。

1.2.5实现一个UDP字典翻译服务器

这里我们可以应用继承与多态的思想来实现这个服务器,因为这个字典翻译服务器与回显服务器本质的区别就是对响应的处理,所以我们对重复的代码继承复用,扩展需要的代码即可。

public class udpDictServer extends udpEchoServer{
    HashMap<String,String> map = null;
    public udpDictServer(int port) throws SocketException {
        super(port);
        map = new HashMap<>();
        map.put("server","服务");
        map.put("client","客户端");
        map.put("cat","🐱");
        map.put("dog","🐕");
        map.put("pig","🐖");
    }
    @Override
    public String process(String request) {
        return map.getOrDefault(request, "该词汇没有查询到");
    }

    public static void main(String[] args) throws IOException {
        udpDictServer udpDictServer = new udpDictServer(9999);
        udpDictServer.start();
    }
}

实现这个字典翻译,还需要数据结构中的map,利用map中的键值对来存储数据。
在这里插入图片描述
然后具体的业务操作就只需要重写process方法即可。
在这里插入图片描述
在执行到这里的时候虽然这个this指的是父类的udpEchoServer对象,但是由于udpDictServer子类继承了udpEchoServer父类有重写了process方法,由于多态的特性执行的process方法其实是子类的process方法。

2.客户端与服务器的流程

  1. 从控制台获取数据
  2. 客户端将数据发送到服务器
  3. 服务器接收客户端发送过来的数据
  4. 计算响应
  5. 服务器将计算好的响应发送给客户端
  6. 客户端接收服务器发送的响应
  7. 将从客户端接收服务器发送的响应打印在控制台

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1918838.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据结构复习计划之复杂度分析(时间、空间)

第二节&#xff1a;算法 时间复杂度和空间复杂度 算法(Algorithm)&#xff1a;是对特定问题求解方法(步骤)的一种描述&#xff0c;是指令的有限序列&#xff0c;其中每一条指令表示一个或多个操作。 算法可以有三种表示形式&#xff1a; 伪代码 自然语言 流程图 算法的五…

时间地点双限定|省公派教师喜提香港城市大学访问学者邀请函

X老师的研究方向为图像处理和机器学习&#xff0c;其根据专业特点及外语水平&#xff0c;将访学目标锁定在香港&#xff0c;并要求20天内获得邀请函以申报省公派。我们仅用了10天时间&#xff0c;就获得了香港城市大学的邀请函&#xff0c;且研究方向高度契合&#xff0c;完成了…

Hive的分区表分桶表

1.分区表&#xff1a; 是Hive中的一种表类型&#xff0c;通过将表中的数据划分为多个子集&#xff08;分区&#xff09;&#xff0c;每个分区对应表中的某个特定的列值&#xff0c;可以提高查询性能和管理数据的效率。分区表的每个分区存储在单独的目录中&#xff0c;分区的定义…

【正点原子i.MX93开发板试用连载体验】为什么模型不能运行在NPU上

本文最早发表于电子发烧友论坛&#xff1a;【新提醒】【正点原子i.MX93开发板试用连载体验】基于深度学习的语音本地控制 - 正点原子学习小组 - 电子技术论坛 - 广受欢迎的专业电子论坛! (elecfans.com) 昨天提到要使模型运行的NPU上&#xff0c;必须先将其量化。如果对没有量化…

构建未来对话:从零开始实现基于Vue 3的AI聊天页面

大家好&#xff0c;今天我们将一起探索如何从零开始&#xff0c;使用Vue 3构建一个AI对话页面。这个过程不仅会让我们了解Vue 3的新特性&#xff0c;还会让我们对构建交互式Web应用有一个全新的认识。如果你是编程新手&#xff0c;别担心&#xff0c;我会用通俗易懂的语言&…

汽车免拆诊断案例 | 2016款保时捷Macan车发动机故障灯异常点亮

故障现象  一辆2016款保时捷Macan车&#xff0c;搭载CYP发动机&#xff0c;累计行驶里程约为11.2万km。车主进厂反映&#xff0c;发动机故障灯异常点亮。 故障诊断  接车后试车&#xff0c;发动机怠速无明显异常&#xff0c;组合仪表上的发动机故障灯异常点亮。用故障检测仪…

数字信号处理及MATLAB仿真(4)——量化的其他概念

上回书说到AD转换的两个步骤——量化与采样两个步骤。现在更加深入的去了解以下对应的概念。学无止境&#xff0c;要不断地努力才有好的收获。万丈高楼平地起&#xff0c;唯有打好基础&#xff0c;才能踏实前行。 不说了&#xff0c;今天咱们继续说说这两个步骤&#xff0c;首先…

stm32学习笔记---MPU6050(理论部分)

目录 MPU6050简介 MPU6050参数 硬件电路 MPU6050框图 PS产品说明书和RM寄存器映像手册 PS产品说明书 RM寄存器映像 采样频率分频器 配置寄存器 陀螺仪配置寄存器 加速度计配置寄存器 数据寄存器 电源管理寄存器1 电源管理寄存器2 器件ID号 声明&#xff1a;本专…

css实现左右两端,并且对齐

<div class"card-header"><span>就诊人管理</span><el-button class"button" type"primary" >添加就诊人</el-button></div>.card-header {display: flex; //实现两端justify-content: space-between; //侧…

计算机基础 进制转化

&#x1f4d1;打牌 &#xff1a; da pai ge的个人主页 &#x1f324;️个人专栏 &#xff1a; da pai ge的博客专栏 ☁️宝剑锋从磨砺出&#xff0c;梅花香自苦寒来 ☁️运维工程师的职责&#xff1a;监…

AMEYA360:类比半导体三款车规级新品介绍

类比半导体三款全新车规级智能驱动芯片——HD70504与HD70804四通道高边驱动、HD7004低导通电阻高边驱动以及DR8112直驱马达驱动芯片介绍&#xff0c;进一步扩展了其汽车智能驱动产品的深度与广度。 新品首发&#xff0c;诠释“芯”动未来 HD70504 & HD70804四通道高边驱动芯…

Windows电脑安装Python结合内网穿透轻松搭建可公网访问私有网盘

文章目录 前言1.本地文件服务器搭建1.1.Python的安装和设置1.2.cpolar的安装和注册 2.本地文件服务器的发布2.1.Cpolar云端设置2.2.Cpolar本地设置 3.公网访问测试4.结语 前言 本文主要介绍如何在Windows系统电脑上使用python这样的简单程序语言&#xff0c;在自己的电脑上搭建…

【Spring Boot】Spring原理:Bean的作用域和生命周期

目录 Spring原理一. 知识回顾1.1 回顾Spring IOC1.2 回顾Spring DI1.3 回顾如何获取对象 二. Bean的作用域三. Bean的生命周期 Spring原理 一. 知识回顾 在之前IOC/DI的学习中我们也用到了Bean对象&#xff0c;现在先来回顾一下IOC/DI的知识吧&#xff01; 首先Spring IOC&am…

【GC 垃圾回收算法和回收器】

作者&#xff1a;ofLJli 链接&#xff1a;https://juejin.cn/post/7003213289425633287?searchId20240709085629749958B21D886D4E67D4 来源&#xff1a;稀土掘金 著作权归作者所有。商业转载请联系作者获得授权&#xff0c;非商业转载请注明出处。 概述 在JVM中主要的结构为&…

电脑桌面文件不见了怎么恢复?需要了解的5个知识和恢复方法!

电脑桌面文件不见了怎么恢复&#xff1f;电脑文件千万条&#xff0c;数据恢复第一条。 当我们发现电脑文件丢失时&#xff0c;切勿着急&#xff0c;只要没有做二次覆盖&#xff0c;丢失的文件还是有机会找回来的。本文整理了电脑误删文件的恢复方法&#xff0c;并提供了一些列…

ZGC在三色指针中的应用

ZGC基于颜色指针的并发处理算法 ZGC初始化之后&#xff0c;整个内存空间的地址视图被设置为Remapped&#xff0c;当进入标记阶段时的视图转变为Marked0&#xff08;也称为M0&#xff09;或者Marked1&#xff08;也称为M1&#xff09;&#xff0c;从标记阶段结束进入转移阶段时…

社区团购小程序源码系统 带完整的安装代码以及搭建部署教程

系统概述 在这个数字化时代&#xff0c;线上活动成为了连接用户与组织者的桥梁。为了满足不同场景的需要&#xff0c;开发一个灵活、可定制的在线活动报名表单小程序显得尤为重要。本文将深入介绍一个自定义在线活动报名表单小程序的源码系统&#xff0c;并提供详细的搭建部署…

sublime中无法找到Package Control或Install Package

在Crtl Shift P 中无法查找到Package Control或Install Package或调用产生报错。 可以尝试在 首选项 ---- > 设置中 检查配置文件"ignored_packages":紧跟的中括号中是否为空&#xff0c;如果不为空请删除其中内容。 如果不确定内容&#xff0c;可以用下面的…

VScode代码对齐快捷键

解决复制过来代码对齐格式问题。 左对齐&#xff1a;Ctrl[ 右对齐&#xff1a;Ctrl]

从零开始做题:logtime

题目 给出1个pcapng文件 解题 wireshark打开题目流量包&#xff0c;在TCP流中发现flag.zip压缩包流量&#xff0c;将flag.zip提取到本地&#xff0c;解压的过程中需要解压密码&#xff0c;接着观察流量 import pyshark import re pcapFilePath logtime.pcapng pcapFilter…