目录
- 1. 正弦数据生成
- 2. 构建网络
- 3. 训练
- 4. 预测
- 5. 完整代码
- 6. 结果展示
1. 正弦数据生成
曲线如下图:
代码如下图:
- 50个点构成一个正弦曲线
- 随机生成一个0~3之间的一个值(随机的原因是防止每次都从相同的点开始,50个点的正弦曲线一样,被模型记住),值的范围区间是[start, start+10]
- 输入x范围[0,48],预测值y范围是[1,49]
2. 构建网络
下图是构建的网络,注意out维度扩展出一个维度,是为了和y维度一致
3. 训练
loss计算采用均方差MSE,优化器采用Adam
注意:hidden_prev的自更新
4. 预测
预测是循环一个点一个点的预测,每次预测的点的结果作为下次点的输入,直到预测出全部点,放到predictions中。
input = x[:,0,:] 去掉了x[1,seq,1]中的seq维度,变成[1,1]
5. 完整代码
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from matplotlib import pyplot as plt
num_time_steps = 50
input_size = 1
hidden_size = 16
output_size = 1
lr=0.01
class Net(nn.Module):
def __init__(self, ):
super(Net, self).__init__()
self.rnn = nn.RNN(
input_size=input_size,
hidden_size=hidden_size,
num_layers=1,
batch_first=True,
)
for p in self.rnn.parameters():
nn.init.normal_(p, mean=0.0, std=0.001)
self.linear = nn.Linear(hidden_size, output_size)
def forward(self, x, hidden_prev):
out, hidden_prev = self.rnn(x, hidden_prev)
# [b, seq, h]
out = out.view(-1, hidden_size)
out = self.linear(out)
out = out.unsqueeze(dim=0)
return out, hidden_prev
model = Net()
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr)
hidden_prev = torch.zeros(1, 1, hidden_size)
for iter in range(6000):
start = np.random.randint(3, size=1)[0]
time_steps = np.linspace(start, start + 10, num_time_steps)
data = np.sin(time_steps)
data = data.reshape(num_time_steps, 1)
x = torch.tensor(data[:-1]).float().view(1, num_time_steps - 1, 1)
y = torch.tensor(data[1:]).float().view(1, num_time_steps - 1, 1)
output, hidden_prev = model(x, hidden_prev)
hidden_prev = hidden_prev.detach()
loss = criterion(output, y)
model.zero_grad()
loss.backward()
# for p in model.parameters():
# print(p.grad.norm())
# torch.nn.utils.clip_grad_norm_(p, 10)
optimizer.step()
if iter % 100 == 0:
print("Iteration: {} loss {}".format(iter, loss.item()))
start = np.random.randint(3, size=1)[0]
time_steps = np.linspace(start, start + 10, num_time_steps)
data = np.sin(time_steps)
data = data.reshape(num_time_steps, 1)
x = torch.tensor(data[:-1]).float().view(1, num_time_steps - 1, 1)
y = torch.tensor(data[1:]).float().view(1, num_time_steps - 1, 1)
predictions = []
input = x[:, 0, :]
for _ in range(x.shape[1]):
input = input.view(1, 1, 1)
(pred, hidden_prev) = model(input, hidden_prev)
input = pred
predictions.append(pred.detach().numpy().ravel()[0])
x = x.data.numpy().ravel()
y = y.data.numpy()
plt.scatter(time_steps[:-1], x.ravel(), s=90)
plt.plot(time_steps[:-1], x.ravel())
plt.scatter(time_steps[1:], predictions)
plt.show()
6. 结果展示
图中黄色点是预测点,蓝色为实际点,前面的曲线是start不随机预测的效果,说明曲线已经被模型记住了;后面的曲线是start随机预测的效果,基本趋势和真实点是一致的。