MYSQL 四、mysql进阶 8(索引优化与查询优化)

news2024/9/21 20:42:23

都有哪些维度可以进行数据库调优?简言之:

  • 索引失效、没有充分利用到索引——建立索引
  • 关联查询太多JOIN(设计缺陷或不得已的需求)——SQL优化
  • 服务器调优及各个参数设置(缓冲、线程数等)——调整my.cnf
  • 数据过多——分库分表

关于数据库调优的知识非常分散。不同的DBMS,不同的公司,不同的职位,不同的项目遇到的问题都不尽相同。这里我们分为三个章节进行细致讲解。

虽然SQL查询优化的技术有很多,但是大方向上完全可以分成物理查询优化逻辑查询优化两大块。

  • 物理查询优化是通过索引表连接方式等技术来进行优化,这里重点需要掌握索引的使用。
  • 逻辑查询优化就是通过SQL等价变换提升查询效率,直白一点就是说,换一种查询写法效率可能更高。

一、数据准备

        学员表 50条, 班级表 1条。

CREATE DATABASE atguigudb2;
USE atguigudb2;
#步骤1:建表
CREATE TABLE `class` (
    `id` INT(11) NOT NULL AUTO_INCREMENT,
    `className` VARCHAR(30) DEFAULT NULL,
    `address` VARCHAR(40) DEFAULT NULL,
    `monitor` INT NULL ,
    PRIMARY KEY (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

CREATE TABLE `student` (
    `id` INT(11) NOT NULL AUTO_INCREMENT,
    `stuno` INT NOT NULL ,
    `name` VARCHAR(20) DEFAULT NULL,
    `age` INT(3) DEFAULT NULL,
    `classId` INT(11) DEFAULT NULL,
    PRIMARY KEY (`id`)
    #CONSTRAINT `fk_class_id` FOREIGN KEY (`classId`) REFERENCES `t_class` (`id`)
) ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

 # 步骤2:设置参数

  • 命令开启:允许创建函数设置:
set global log_bin_trust_function_creators=1; # 不加global只是当前窗口有效。

步骤3:创建函数

保证每条数据都不同。

#随机产生字符串
DELIMITER //
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN
DECLARE chars_str VARCHAR(100) DEFAULT
'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ';
DECLARE return_str VARCHAR(255) DEFAULT '';
DECLARE i INT DEFAULT 0;
WHILE i < n DO
SET return_str =CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
SET i = i + 1;
END WHILE;
RETURN return_str;
END //
DELIMITER ;
#假如要删除
#drop function rand_string;

随机产生班级编号

#用于随机产生多少到多少的编号
DELIMITER //
CREATE FUNCTION rand_num (from_num INT ,to_num INT) RETURNS INT(11)
BEGIN
DECLARE i INT DEFAULT 0;
SET i = FLOOR(from_num +RAND()*(to_num - from_num+1)) ;
RETURN i;
END //
DELIMITER ;
#假如要删除
#drop function rand_num;

#步骤4:创建存储过程

#创建往stu表中插入数据的存储过程
DELIMITER //
CREATE PROCEDURE insert_stu( START INT , max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0; #设置手动提交事务
REPEAT #循环
SET i = i + 1; #赋值
INSERT INTO student (stuno, name ,age ,classId ) VALUES
((START+i),rand_string(6),rand_num(1,50),rand_num(1,1000));
UNTIL i = max_num
END REPEAT;
COMMIT; #提交事务
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_stu;

创建往class表中插入数据的存储过程

#执行存储过程,往class表添加随机数据
DELIMITER //
CREATE PROCEDURE `insert_class`( max_num INT )
BEGIN
DECLARE i INT DEFAULT 0;
SET autocommit = 0;
REPEAT
SET i = i + 1;
INSERT INTO class ( classname,address,monitor ) VALUES
(rand_string(8),rand_string(10),rand_num(1,100000));
UNTIL i = max_num
END REPEAT;
COMMIT;
END //
DELIMITER ;
#假如要删除
#drop PROCEDURE insert_class;

步骤5:调用存储过程

class

#执行存储过程,往class表添加1万条数据
CALL insert_class(10000);

stu

#执行存储过程,往stu表添加50万条数据
CALL insert_stu(100000,500000);

步骤6:删除某表上的索引

创建存储过程

DELIMITER //
CREATE PROCEDURE `proc_drop_index`(dbname VARCHAR(200),tablename VARCHAR(200))
BEGIN
        DECLARE done INT DEFAULT 0;
        DECLARE ct INT DEFAULT 0;
        DECLARE _index VARCHAR(200) DEFAULT '';
        DECLARE _cur CURSOR FOR SELECT index_name FROM
information_schema.STATISTICS WHERE table_schema=dbname AND table_name=tablename AND
seq_in_index=1 AND index_name <>'PRIMARY' ;
#每个游标必须使用不同的declare continue handler for not found set done=1来控制游标的结束
		DECLARE CONTINUE HANDLER FOR NOT FOUND set done=2 ;
#若没有数据返回,程序继续,并将变量done设为2
        OPEN _cur;
        FETCH _cur INTO _index;
        WHILE _index<>'' DO
            SET @str = CONCAT("drop index " , _index , " on " , tablename );
            PREPARE sql_str FROM @str ;
            EXECUTE sql_str;
            DEALLOCATE PREPARE sql_str;
            SET _index='';
            FETCH _cur INTO _index;
        END WHILE;
    CLOSE _cur;
END //
DELIMITER ;

执行存储过程

CALL proc_drop_index("dbname","tablename");

 

二、索引失效案例:

        Mysql中提高性能的一个最有效的方式是对数据表设计合理的索引,索引提高了高校访问数据的方法,并且加快查询的速度,因此索引对查询的速度有着至关重要的影响。

  • 使用索引可以快速定位表中的某条记录,从而提高数据库查询的速度,提高数据库的性能。
  • 如果查询时没有使用索引,查询语句就会扫描表中的所有记录,在数据量打的情况下,这样查询的速度会很慢。

        大多数情况下都采用B+树来构建索引,只是空间列类型的索引使用R-树,并且MEMORY还支持hash索引。

        其实用不用索引,最终都是优化器说了算,优化器是基于 cost开销 ,他不是基于规则,也不是基于语义,怎么样开销小就怎么来,另外,sql语句是否使用索引,跟数据库版本,数据量,数据选择度都有关系。

        

        2.1 全值匹配我最爱

        系统中经常出现的sql语句如下:

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4;
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';

        建立索引前执行:(关注执行时间)

mysql> SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';
Empty set, 1 warning (0.28 sec)

        建立索引

CREATE INDEX idx_age ON student(age);
CREATE INDEX idx_age_classid ON student(age,classId);
CREATE INDEX idx_age_classid_name ON student(age,classId,name);

        建立索引后执行:

mysql> SELECT SQL_NO_CACHE * FROM student WHERE age=30 AND classId=4 AND name = 'abcd';
Empty set, 1 warning (0.01 sec)

        可以看到,创建索引前的查询时间时0.28s,创建索引后的查询时间是0.01s,索引帮助我们极大的提高了查询效率。

 

        2.2 最佳左前缀法则

        在MySQL建立联合索引时会遵守最佳左前缀原则,即最左优先,在检索数据时从联合索引的最左边开始匹配。

举例1:

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abcd';        

举例2:

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=1 AND student.name = 'abcd';

举例3:索引idx_age_classid_name还能否正常使用?

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=4 AND student.age=30 AND student.name = 'abcd';

 如果索引了多列,要遵守最左前缀法则。指的是查询从索引的最左前列开始并且不跳过索引中的列。

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.age=30 AND student.name = 'abcd';

虽然可以正常使用,但是只有部分被使用到了。

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.classId=1 AND student.name = 'abcd';
完全没有使用上索引。

结论:MySQL可以为多个字段创建索引,一个索引可以包含16个字段。对于多列索引,过滤条件要使用索引必须按照索引建立时的顺序,依次满足,一旦跳过某个字段,索引后面的字段都无法被使用。如果查询条件中没有用这些字段中第一个字段时,多列(或联合)索引不会被使用。
 

拓展:Alibaba《Java开发手册》

索引文件具有 B-Tree 的最左前缀匹配特性,如果左边的值未确定,那么无法使用此索引。

        2.3 主键插入顺序

        对于一个使用InnoDB存储引擎的表来说,在我们没有显式的创建索引时,表中的数据实际上都是存储在聚簇索引的子节点的,而记录又是存储在数据页中的,数据页和记录又是按照记录 主键值从小到大的顺序进行排序,所以如果我们插入的记录的主键值是以此增大的话,那我们每插满一个数据页就换到下一个数据页继续插,而如果我们插入的主键值忽大忽小的话,就比较麻烦了,假设某个数据页存储的记录已经满了,他存储的主键值在1-100之间。

        

        如果此时再插入一条主键值为 9 的记录,那它插入的位置就如下图:
        
        可这个数据页已经满了,再插进来咋办呢?我们需要把当前 页面分裂 成两个页面,把本页中的一些记录移动到新创建的这个页中。页面分裂和记录移位意味着什么?意味着: 性能损耗 !所以如果我们想尽量避免这样无谓的性能损耗,最好让插入的记录的 主键值依次递增 ,这样就不会发生这样的性能损耗了。 所以我们建议:让主键具有 AUTO_INCREMENT ,让存储引擎自己为表生成主键,而不是我们手动插入 , 比如: person_info 表:

        

CREATE TABLE person_info(
    id INT UNSIGNED NOT NULL AUTO_INCREMENT,
    name VARCHAR(100) NOT NULL,
    birthday DATE NOT NULL,
    phone_number CHAR(11) NOT NULL,
    country varchar(100) NOT NULL,
    PRIMARY KEY (id),
    KEY idx_name_birthday_phone_number (name(10), birthday, phone_number)
);

        我们自定义的主键列 id 拥有 AUTO_INCREMENT 属性,在插入记录时存储引擎会自动为我们填入自增的主键值。这样的主键占用空间小,顺序写入,减少页分裂。        

        2.4 计算、函数、类型转换(自动或手动)导致索引失效

 1.这两条sql哪种写法更好

EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';

 2.创建索引

CREATE INDEX idx_name ON student(NAME);

 3.第一种:索引优化生效

 mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';  mysql> SELECT SQL_NO_CACHE * FROM student WHERE student.name LIKE 'abc%';
+---------+---------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa | 164 | 259 |
| 7170042 | 3102064 | ABcHeB | 199 | 161 |
| 1901614 | 1833636 | ABcHeC | 226 | 275 |
| 5195021 | 1127043 | abchEC | 486 | 72 |
| 4047089 | 3810031 | AbCHFd | 268 | 210 |
| 4917074 | 849096 | ABcHfD | 264 | 442 |
| 1540859 | 141979 | abchFF | 119 | 140 |
| 5121801 | 1053823 | AbCHFg | 412 | 327 |
| 2441254 | 2373276 | abchFJ | 170 | 362 |
| 7039146 | 2971168 | ABcHgI | 502 | 465 |
| 1636826 | 1580286 | ABcHgK | 71 | 262 |
| 374344 | 474345 | abchHL | 367 | 212 |
| 1596534 | 169191 | AbCHHl | 102 | 146 |
...
| 5266837 | 1198859 | abclXe | 292 | 298 |
| 8126968 | 4058990 | aBClxE | 316 | 150 |
| 4298305 | 399962 | AbCLXF | 72 | 423 |
| 5813628 | 1745650 | aBClxF | 356 | 323 |
| 6980448 | 2912470 | AbCLXF | 107 | 78 |
| 7881979 | 3814001 | AbCLXF | 89 | 497 |
| 4955576 | 887598 | ABcLxg | 121 | 385 |
| 3653460 | 3585482 | AbCLXJ | 130 | 174 |
| 1231990 | 1283439 | AbCLYH | 189 | 429 |
| 6110615 | 2042637 | ABcLyh | 157 | 40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (0.01 sec)

 4.第二种:索引优化失效

mysql> EXPLAIN SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
mysql> SELECT SQL_NO_CACHE * FROM student WHERE LEFT(student.name,3) = 'abc';
+---------+---------+--------+------+---------+
| id | stuno | name | age | classId |
+---------+---------+--------+------+---------+
| 5301379 | 1233401 | AbCHEa | 164 | 259 |
| 7170042 | 3102064 | ABcHeB | 199 | 161 |
| 1901614 | 1833636 | ABcHeC | 226 | 275 |
| 5195021 | 1127043 | abchEC | 486 | 72 |
| 4047089 | 3810031 | AbCHFd | 268 | 210 |
| 4917074 | 849096 | ABcHfD | 264 | 442 |
| 1540859 | 141979 | abchFF | 119 | 140 |
| 5121801 | 1053823 | AbCHFg | 412 | 327 |
| 2441254 | 2373276 | abchFJ | 170 | 362 |
| 7039146 | 2971168 | ABcHgI | 502 | 465 |
| 1636826 | 1580286 | ABcHgK | 71 | 262 |
| 374344 | 474345 | abchHL | 367 | 212 |
| 1596534 | 169191 | AbCHHl | 102 | 146 |
...
| 5266837 | 1198859 | abclXe | 292 | 298 |
| 8126968 | 4058990 | aBClxE | 316 | 150 |
| 4298305 | 399962 | AbCLXF | 72 | 423 |
| 5813628 | 1745650 | aBClxF | 356 | 323 |
| 6980448 | 2912470 | AbCLXF | 107 | 78 |
| 7881979 | 3814001 | AbCLXF | 89 | 497 |
| 4955576 | 887598 | ABcLxg | 121 | 385 |
| 3653460 | 3585482 | AbCLXJ | 130 | 174 |
| 1231990 | 1283439 | AbCLYH | 189 | 429 |
| 6110615 | 2042637 | ABcLyh | 157 | 40 |
+---------+---------+--------+------+---------+
401 rows in set, 1 warning (3.62 sec)

type为“ALL”,表示没有使用到索引,查询时间为 3.62 秒,查询效率较之前低很多。

再举例:

  • student表的字段stuno上设置有索引

    CREATE INDEX idx_sno ON student(stuno);
  • 索引优化失效:(假设:student表的字段stuno上设置有索引)

    EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno+1 = 900001;

 运行结果:

  • 索引优化生效:

    EXPLAIN SELECT SQL_NO_CACHE id, stuno, NAME FROM student WHERE stuno = 900000;

再举例:

  • student表的字段name上设置有索引

    CREATE INDEX idx_name ON student(NAME);
    EXPLAIN SELECT id, stuno, name FROM student WHERE SUBSTRING(name, 1,3)='abc';
    
  • 索引优化生效

    EXPLAIN SELECT id, stuno, NAME FROM student WHERE NAME LIKE 'abc%';

    image-20220704215600507

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1916188.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Spring中的工厂模式详解及应用示例

1. Spring中的BeanFactory BeanFactory是一个接口&#xff0c;表示它是一个工厂&#xff0c;负责生产和管理bean。在Spring中&#xff0c;BeanFactory是IOC容器的核心接口&#xff0c;定义了管理Bean的通用方法&#xff0c;如 getBean 和 containsBean。 BeanFactory与IOC容器…

3D云渲染工具对决:Maya与Blender的性能和功能深度比较

3D建模和动画制作已成为数字领域不可或缺的一环&#xff0c;无论是在影视特效的震撼场面&#xff0c;还是在游戏角色的生动表现&#xff0c;3D技术都扮演着至关重要的角色。而在这一领域&#xff0c;Maya和Blender这两款软件&#xff0c;以其强大的功能和广泛的应用&#xff0c…

【想要了解Anaconda介绍、安装配置及使用,看这篇文章就够了】

一、Anaconda介绍及安装配置 1、Anaconda简介 Anaconda是一个用于科学计算的 Python 发行版&#xff0c;支持 Linux, Mac, Windows, 包含conda、Python等190多个科学包及其依赖项。它便于获取和管理包&#xff0c;包括python和许多常用软件库&#xff08;如numpy、pandas等&a…

ITIL4认证考试注意事项(附考试答题攻略)

作为一位持有ITIL4中级认证的IT服务管理专家&#xff0c;我深知备考ITIL4认证考试的重要性。在此分享我的复习备考经验&#xff0c;帮助你顺利通过考试。 1. 制定复习计划 制定详细的复习计划是备考的第一步。合理安排每天的复习时间&#xff0c;重点复习ITIL4的关键概念、四个…

【高中数学/对数函数】比较a=ln2/2,b=ln5/5的大小

【问题】 比较aln2/2,bln5/5的大小 【解答】 a-bln2/2-ln5/5(5*ln2-2*ln5)/10(ln2^5-ln5^2)/10(ln32-ln25)/10>0 所以a>b 【图像】 如果绘出函数ylnx/x的图像&#xff0c;再标记出a,b的位置&#xff0c;则绘出图像如下&#xff1a; 由上图可以看出&#xff0c;a,b两…

一道笔试题 - 反转列表

文章目录 描述预期结果代码 描述 给定一个单链表的头结点pHead(该头节点是有值的&#xff0c;比如在下图&#xff0c;它的val是1)&#xff0c;长度为n&#xff0c;反转该链表后&#xff0c;返回新链表的表头。 如当输入链表{1,2,3}时&#xff0c; 经反转后&#xff0c;原链表变…

友思特方案 | 低延迟GigE Vision解决方案:用于红外设备、医疗和工业级探测面板

导读 维持实时视频系统软硬件的长期成本效益&#xff0c;是该系统在医疗、工业等领域广泛应用的前提。友思特低延迟GigE Vision解决方案创新性地突破了这一难题&#xff0c;提供高带宽且高可靠性的端到端网络链接&#xff0c;有效降低了开发成本、复杂性和时间。 引言 虽然实…

和鲸科技荣耀入选2024 H1 「中国最具价值 AGI 创新机构 TOP 50」

以下文章来源于Founder Park&#xff0c;作者Founder Par 大模型的盛宴&#xff0c;不应该只属于那些无数光环加身的算法天才们。 模型的冰山一角下&#xff0c;是应用层的暗流涌动&#xff0c;这是一个更庞大&#xff0c;也更隐秘的蓝海。但发掘这一切的前提是&#xff0c;所…

2024年PMP考试备考经验分享

PMP是项目管理领域最重要的认证之一,本身是IT行业比较流行的证书&#xff0c;近几年在临床试验领域也渐渐流行起来&#xff0c;是我周围临床项PM几乎人手一个的证书。 考试时间&#xff1a;PMP认证考试形式为180道选择题&#xff0c;考试时间为3小时50分。 考试计划&#xff…

数字化转型领航者:佑美科技塑造智能健康新生态

在全球数字化转型的浪潮中,佑美专注于智能健康解决方案的创新,正以其卓越的技术实力和前瞻性的战略眼光,引领着智能穿戴设备和健身器械行业的未来趋势。佑美科技不仅深耕数字化转型,更在多个领域获得了国家级和省级的权威认可,彰显了其在智能健康领域的影响力。 智能穿戴设备正…

JS获取本机ip地址方法

前端获取本机ip地址&#xff1b;使用第三方免费API <script>function ipJson(ipJson) {console.log(获取到的网络IP,ipJson);//可以把结果存在window上&#xff0c;方便调用window.ipJson ipJson;} </script> <script src"https://whois.pconline.com.cn/…

AI自动生成PPT哪个软件好?揭秘5款自动生成PPT的工具

在职场的竞技场上&#xff0c;演示文稿如同战士的利剑&#xff0c;其锋芒直接影响着演讲者的说服力。 然而&#xff0c;制作一份高质量的PPT往往需要耗费大量时间与精力。随着科技的进步&#xff0c;AI自动生成PPT成为了提升效率的新选择。面对市场上琳琅满目的软件&#xff0…

高深宽比刻蚀和纳米级图形化推进存储器的路线图

随着市场需求推动存储器技术向更高密度、更优性能、新材料、3D堆栈、高深宽比 &#xff08;HAR&#xff09; 刻蚀和极紫外 &#xff08;EUV&#xff09; 光刻发展&#xff0c;泛林集团正在探索未来三到五年生产可能面临的挑战&#xff0c;以经济的成本为晶圆厂提供解决方案。 …

ICC2:split_fanout如何插inverter pair

我正在「拾陆楼」和朋友们讨论有趣的话题,你⼀起来吧? 拾陆楼知识星球入口 相关文章链接: ICC2:split fanout用法

数模打怪(一)之层次分析法

一、什么是层次分析法 层次分析法&#xff08;AHP&#xff09;主要用于解决评价类问题&#xff08;可打分&#xff09; 比如哪种方案更好、哪位运动员更优秀等 二、层次分析法的三个步骤 1、建立层次结构 分析题目&#xff0c;找出评价类问题的三要素&#xff1a; &#x…

PP网/尼龙网检测方案居然如此高效?

硅胶套是一种由硅胶材料制成的套管&#xff0c;通常用于保护、密封或绝缘电子元件、电线、电缆等。硅胶具有优异的耐高温、耐低温、耐化学腐蚀和绝缘性能&#xff0c;因此硅胶套常被用于需要抗高温、耐磨、耐腐蚀的环境中。硅胶套的柔软性和良好的弹性使其适合于包裹各种形状的…

解决了一个java Bug:Exception in thread “main“ java.lang.NullPointerException

写代码&#xff0c;遇到了个问题。 很纳闷&#xff0c;跟着人家写的代码。只能去查资料。 赶紧去找&#xff0c;自己的代码 逆天&#xff0c;赶紧改&#xff01; 成功了&#xff01;&#xff01;&#xff01;

剪画小程序:调整音量与均衡让音乐更动听

在音频的世界里&#xff0c;音量调节和均衡是两项关键的技能&#xff0c;它们能让我们的听觉体验更加完美。 想象一下&#xff0c;聆听音乐时&#xff0c;合适的音量能让我们完全沉浸其中&#xff0c;感受每一个音符的魅力&#xff1b;而在观看视频或进行音频创作时&#xff0c…

达梦数据库系列—24. DSC集群监控

目录 DSC监控 监视器命令 动态性能视图 集群日志 CSS日志 ASM 集群日志 DSC监控 DMCSSM 监视器可以查看DSC 集群的运行情况&#xff0c;也可以查询 DMDSC 相关的动态视图&#xff0c;可以用来启动、关闭 DMDSC 集群&#xff0c;还可以进行手动控制节点故障处理和节点重加…

萌啦数据多少钱一个月,萌啦数据价格是多少

在跨境电商的浩瀚星海中&#xff0c;Ozon作为俄罗斯及独联体地区领先的电商平台&#xff0c;正吸引着越来越多的商家和创业者的目光。而“萌啦ozon数据”作为专注于Ozon平台数据分析与洞察的服务提供商&#xff0c;更是成为了众多商家在数据驱动决策道路上的得力助手。然而&…