大语言模型里的微调vs RAG vs 模板提示词

news2024/11/15 10:08:53

文章目录

    • 介绍
      • 微调(Fine-tuning)
      • 定义
        • 优点:
        • 缺点:
        • 应用场景:
        • 技术细节
      • 检索增强生成(RAG,Retrieval-Augmented Generation)
      • 定义
        • 优点:
        • 缺点:
        • 应用场景:
        • 技术细节
      • 模板提示词(Prompt Engineering)
        • 定义
        • 优点:
        • 缺点:
        • 应用场景:
        • 技术细节
      • 对比与选择


本文从后端程序员的角度来谈下对于这几种提高大模型回答结果的优化手段


介绍

背景:大语言模型(LLM)的发展背景
目的:理解微调、RAG和模板提示词的重要性及其在实际开发中的应用

微调(Fine-tuning)

定义

微调是指在预训练模型的基础上,使用特定任务的数据进行再次训练。

优点:

提升模型在特定任务上的表现
可以在现有基础上进一步优化模型

缺点:

需要大量标注数据
训练成本高,时间长

应用场景:

客服问答系统
专业领域文档的理解与处理

技术细节

非专业略掉。

检索增强生成(RAG,Retrieval-Augmented Generation)

定义

RAG结合了信息检索与生成模型,通过先检索相关文档,再基于这些文档生成回答。

优点:

减少模型需要记住的知识量
提高回答的准确性和可靠性

缺点:

系统复杂度增加
需要维护高质量的检索数据库,数据库检索出来的相关文档直接影响最后生成的结果,所以在向量数据库的入库和检索过程要通过各种手段来进行优化。

应用场景:

问答系统
知识库增强的智能助手

技术细节

通过外挂知识库的方式,先提前把相关的数据向量化后store在向量数据库里,然后查询时再把这部分
内容查出来,然后一起喂给llm。这对于一些专业知识来说非常有用。因为对于一些非公开数据而言,llm也不知道这部分数据。
在这里插入图片描述

模板提示词(Prompt Engineering)

定义

模板提示词是指通过设计特定格式的输入来引导大语言模型生成预期的输出。

优点:

无需重新训练模型
灵活性高,适用范围广

缺点:

依赖于对模型行为的深刻理解
复杂任务时可能需要大量试验

应用场景:

文本生成
对话系统

技术细节

用户提问的问题常常描述不清,导致大模型往往不能给出精准的答案。实际上大模型能力是够的,只是由于输入的信息不够,才会导致这种结果,通过一个明确的提示词模板,对用户的提问进行包装,
好用大模型能够精确的理解需求。

提示词模板

提示词模板
1.任务描述:

简要描述任务的背景和目标。
输入:
2. 提供输入格式和示例数据。

指令:
3. 给出明确的指令,解释如何处理输入以生成所需输出。

输出格式:
4. 指定输出格式和示例数据。

示例:
5. 提供一个完整的输入和输出示例,以帮助理解和调试。

对比与选择

微调 vs RAG vs 模板提示词:
数据需求:微调 > RAG > 模板提示词
灵活性:模板提示词 > RAG > 微调
实现复杂度:RAG > 微调 > 模板提示词

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1915939.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

论文学习 StarGANv2 ——StarGAN v2: Diverse Image Synthesis for Multiple Domains

多领域不同图像合成 We have made dataset available at https://github.com/clovaai/stargan-v2. 摘要: 一个好的图像到图像转换模型应该学习不同视觉域之间的映射,同时满足以下属性: 1)生成图像的多样性 2)在多个域上的可扩展性。 现有的方法解决…

嵌入式应用开发之代码整洁之道

前言:本系列教程旨在如何将自己的代码写的整洁,同时也希望小伙伴们懂如何把代码写脏,以备不时之需,同时本系列参考 正点原子 , C代码整洁之道,编写可读的代码艺术。 #好的代码的特点 好的代码应该都有着几…

微软代码签名证书的申请流程包含哪几个关键步骤?

在软件开发环境中,确保软件的安全性和可信度至关重要。沃通CA提供的代码签名证书作为一种重要的安全措施,可以帮助开发者验证其软件的来源和完整性,有效地避免用户因安全顾虑而避免安装或使用软件。本文将详细介绍如何申请沃通CA代码签名证书…

《算法笔记》总结No.6——贪心

一.简单贪心 贪心法是求解一类最优化问题的方法,它总是考虑在当前状态下局部最优(或较优)之后,来使全局的结果达到最优(或较优)的策略。显然,如果采取较优而非最优的策略(最优策略可能不存在或是不易想到),得到的全局结果也无法是…

springboot驾校管理系统-计算机毕业设计源码49777

驾校管理系统 摘 要 驾校管理系统是一个基于Spring Boot框架开发的系统,旨在帮助驾校提高管理效率和服务水平。该系统主要实现了用户管理、年月类型管理、区域信息管理、驾校信息管理、车辆信息管理、报名信息管理、缴费信息管理、财务信息管理、教练分配管理、更换…

雨量监测站的重要性有哪些

在全球气候变化和极端天气事件频发的背景下,雨量监测站成为了我们理解降水模式、预测天气变化以及制定应对措施的重要工具。 雨量监测站是一种专门用于测量和记录降水量的设施。它们通过配备高精度的雨量传感器,能够实时监测降雨情况,并提供关…

政安晨【零基础玩转各类开源AI项目】基于Ubuntu系统部署MuseV (踩完了所有的坑):基于视觉条件并行去噪的无限长度和高保真虚拟人视频生成

目录 下载项目 创建虚拟环境 启动虚拟环境&执行项目依赖 基于DOCKER的尝试 A. 安装引擎 B. 下载桌面安装包 C. 安装桌面包 用Docker运行MuseV 1. 拉取镜像 ​编辑 2. 运行Docker镜像 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收…

HDFS 块重构和RedundancyMonitor详解

文章目录 1. 前言2 故障块的重构(Reconstruct)2.1 故障块的状态定义和各个状态的统计信息2.2 故障文件块的查找收集2.5.2.1 misReplica的检测2.5.2.2 延迟队列(postponedMisreplicatedBlocks)的构造和实现postponedMisreplicatedBlocks中Block的添加postponedMisreplicatedBloc…

在Visutal Studio 2022中完成D3D12初始化

在Visutal Studio 2022中完成DirectX设备初始化 1 DirectX121.1 DirectX 简介1.2 DirectX SDK安装2 D3D12初始化2.1 创建Windwos桌面项目2.2 修改符合模式2.3 下载d3dx12.h文件2.4 创建一个异常类D3DException,定义抛出异常实例的宏ThrowIfFailed3 D3D12的初始化步骤3.1 初始化…

智慧园区管理系统建设方案(Word完整原件)

1. 项目概述 1.1. 项目名称 1.2. 项目承担单位及负责人 1.3. 项目实施机构及项目负责人 1.4. 建设目标、内容 1.5.1建设目标 1.5.2建设内容 1.5. 建设方式 2.项目建设的必要性 2.1. 建设背景 2.2. 现状分析 2.3. 项目建设的必要性和意义 2.3.1.项目建设的必要性 2…

突发,众多网站流量被盗刷!事情没那么简单。。

这两天发生了一件震惊 IT 圈的大事,很多程序员博主的网站竟然 同时 被恶意攻击,盗刷了大把流量费,我这个老倒霉蛋自然也中招了,作为受害人,专门做了本次分享,希望其他有网站的朋友们也都小心点。 那为什么…

准大一新生开学千万要带证件照用途大揭秘

1、提前关注好都有哪些考场,以及这些考场大致在网页的哪个位置。比如我选对外经贸大学,我就直接找到第二个点进去。 2、电脑上同时开了谷歌浏览器和IE浏览器,以及手机也登陆了。亲测下来,同一时间刷新,谷歌浏览器能显示…

勇攀新高峰|暴雨信息召开2024年中述职工作会议

7月8日至9日,暴雨信息召开2024年中述职工作会议,总结回顾了上半年的成绩和不足,本次会议采用线上线下的方式举行,公司各部门管理人员、前台市场营销人员参加述职,公司领导班子出席会议。 本次述职采取了现场汇报点评的…

搜维尔科技:【研究】Scalefit是一款可在工作场所自动处理3D姿势分析结果的软件

Scalefit是一款可在工作场所自动处理 3D 姿势分析结果的软件。这甚至可以在衡量员工的同时发生。然后,Scalefit 根据国际标准对姿势、压缩力和关节力矩进行分析和可视化。 3D姿势分析 如今,Xsens 技术可让您快速测量工作场所员工的态度。一套带有 17 个…

反向散射技术(backscatter communication)

智能反射表面辅助的反向散射通信系统研究综述(知网) 1 反向散射通信技术优势和应用场景 反向散射通信技术通过被动射频技术发送信号,不需要一定配有主动射频单元,被认为是构建绿色节能、低成本、可灵活部署的未来物联网规模化应用关键技术之一,是实现“…

Milvus核心组件(1)- Architecture

目录 cluster 模式 数据请求处理流程 总流程 逻辑channel 到物理channel 数据维护流程 cluster 模式 上一篇其实已经说过 standalone 模式,其实集群模式大同小异,只是在不同机子间使用Kafka或者其他消息中间件保证数据及逻辑的一致性。 Log Broker…

VUE超详细入门

目录 1.什么是 Vue.js 2.Vue.js 优点 Vue中的第一个hello world Vue指令 v-model v-bind v-on v-if v-show v-for Vue 实例生命周期 从传统架构转向单文件架构(通过组件拼接) 安装element-ui使用 1.什么是 Vue.js Vue (读音 /vju ː /,类似于 view) 是…

基本的路由策略配置

目录 原理概述 实验目的 实验内容 实验拓扑 实验编址 实验步骤 1、基本配置 2、搭建OSPF和RIP网络 3、使用Route-Policy对引入到OSPF 进程的路由进行过滤和修改 主要命令 原理概述 路由策略Route-Policy 的应用非常广泛。例如,它可以规定路由器在发布路由时只…

Databricks 收购 Tabular 的意义:数据开放框架的胜利

Databricks 宣布收购 Tabular,这是一个由 Apache Iceberg 的原始创建者开发的数据平台,在数据分析行业引发了涟漪。此次收购凸显了开放框架在数据领域日益增长的重要性,预示着数据管理、分析和 AI/ML 计划领域的创新、协作和可访问性的新时代…

RedisTemplate 中序列化方式辨析

在Spring Data Redis中,RedisTemplate 是操作Redis的核心类,它提供了丰富的API来与Redis进行交互。由于Redis是一个键值存储系统,它存储的是字节序列,因此在使用RedisTemplate时,需要指定键(Key&#xff09…