对比学习和多模态任务

news2025/1/11 7:10:19

1. 对比学习

对比学习(Contrastive Learning)是一种自监督学习的方法,旨在通过比较数据表示空间中的不同样本来学习有用的特征表示。其核心思想是通过最大化同类样本之间的相似性(或降低它们之间的距离),同时最小化异类样本之间的相似性(或增加它们之间的距离),来学习数据的有意义表示。

在这里插入图片描述

2. SimCLR

SimCLR(Simple Contrastive Learning of Representations)是一种用于自监督学习的框架,旨在学习数据表示的高效表示,通过比较同一图像的不同视图来学习图像表示。

在这里插入图片描述

  • 数据增强(Data Augmentation):simCLR首先对每个输入样本应用多种数据增强操作,这些操作包括裁剪、颜色、变换等。通过应用多种不同的增强,可以生成多个视角或变体的同一样本。越离谱需要学的越多。
  • 特征提取和编码器(Feature Extraction and Encoder):每个增强后的样本经过一个共享的卷积神经网络(如ResNet),这个网络通常包含多个卷积层和池化层,用来提取输入数据的特征。Encoder的输出是一个高维特征向量,这些向量捕捉了输入数据在不同视角下的表示。

为了加强学习,SimCLR网络通常包含一个投影头(Projection Head),用于将从特征提取器中提取的特征映射到一个更高维度的表示空间。这有助于提高对比学习的性能和有效性。

  • 对比损失计算(Contrastive Loss Calculation):核心是使用对比余弦相似性(Contrastive Cosine Similarity),它衡量了两个数据表示之间的相似性。对于每个输入样本,在编码器输出的特征向量上进行正则化(Normalization),然后计算它们的余弦相似度。具体步骤:将每个特征向量归一化为单位长度,这有助于捕捉特征向量的方向信息而不是其幅度;使用余弦相似度度量来比较每对增强样本的相似性;对于每个样本,选择同类样本(即同一原始样本的其他增强版本)作为正样本,选择其他所有样本作为负样本(即所有其他原始样本的增强版本)。
  • 损失函数最小化:simCLR的目标是最大化同类样本的相似性(即余弦相似度),同时最小化异类样本的相似性。因此,它的损失函数通常定义为最小化负对数似然(Negative Log-Likelihood)或最大化交叉熵损失函数,这些损失函数都是用来度量对比损失的效果。
  • 训练与特征评估:模型通过随机梯度下降(SGD)或其变种进行训练,优化损失函数。一旦模型训练完成,可以使用编码器(Encoder)提取的特征向量来表示新的未见数据,并在其上执行各种监督或非监督任务,例如分类、聚类或检索等。

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

3. 多模态任务

多模态任务(multimodal tasks)涉及处理和理解多种不同类型数据的任务,这些数据可以来自于不同的传感器、来源或数据源。这些任务通常需要综合利用来自多个模态(如文本、图像、音频等)的信息来完成。
在这里插入图片描述

4. BYOL

BYOL(Bootstrap Your Own Latent)是一种自监督学习方法,特别适用于视觉任务中的表示学习。它由DeepMind提出,旨在通过自动化的方式学习高质量的特征表示,无需人工标注的大规模数据集。
BYOL利用自监督学习的方法,通过最大化两个不同视角下同一图像的相似性来学习视觉特征。这种方法避免了依赖于大量标注数据的训练,使得模型可以在资源有限的情况下进行有效学习。

在这里插入图片描述

在这里插入图片描述

5. SimCSE

SimCSE(Simple Contrastive Learning of Sentence Embeddings)是一种用于学习句子嵌入(sentence embeddings)的简单对比学习方法。它的核心思想是通过对比学习的方式,将语义相似的句子映射到接近的空间位置,从而学习到句子的语义表示。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1912257.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

使用F1C200S从零制作掌机之debian文件系统完善NES

一、模拟器源码 源码:https://files.cnblogs.com/files/twzy/arm-NES-linux-master.zip 二、文件系统 文件系统:debian bullseye 使用builtroot2018构建的文件系统,使用InfoNES模拟器存在bug,搞不定,所以放弃&…

这8款宝藏软件,才是安卓手机必装App!

​AI视频生成:小说文案智能分镜智能识别角色和场景批量Ai绘图自动配音添加音乐一键合成视频https://aitools.jurilu.com/ 1.我的日记——My Diary My Diary 是一款带锁的免费安卓日记工具。 它可用于记录每日日记、秘密想法、旅程、心情追踪或任何私人时刻。 你可…

使用AI学习英语

使用AI学英语可以通过与智能AI对话、模拟对话场景、提供即时反馈和个性化学习计划等方式提高学习效率和效果。然而,AI技术也存在局限性,如缺乏情感交流和真实语境,需要与真人教师结合使用。 AI学英语的基本原理和应用 AI的基本原理 AI&…

Java内存区域与内存溢出异常(补充)

2.2.5 方法区 方法区(Method Area)与Java堆一样,是各个线程共享的内存区域,它用于存储已被虚拟机加载的类型信息、常量、静态变量、即时编译器编译后的代码缓存等数据。虽然《Java虚拟机规范》中把方法区描述为堆的一个逻辑部分,但是它却有一…

设计模式探索:适配器模式

1. 适配器模式介绍 1.1 适配器模式介绍 适配器模式(adapter pattern)的原始定义是:将一个类的接口转换为客户期望的另一个接口,适配器可以让不兼容的两个类一起协同工作。 适配器模式的主要作用是把原本不兼容的接口&#xff0c…

采用3种稀疏降噪模型对心电信号进行降噪(Matlab R2021B)

心电信号采集自病人体表,是一种无创性的检测手段。因此,心电信号采集过程中,本身也已经包含了机体内部其他生命活动带来的噪声。同时,由于采集设备和环境中存在电流的变化,产生电磁发射等物理现象,会对心电…

3-6 构建线性模型解决温度计示数转换问题

3-6 构建线性模型解决温度计示数转换问题 直接上源码 %matplotlib inline import numpy as np import torch torch.set_printoptions(edgeitems2, linewidth75)导入必要的库并设置 PyTorch 的打印选项,确保在打印张量时显示边缘项和行宽。 #%% t_c [0.5, 14.0,…

【Android应用】生成证书和打包

安卓生成证书和打包 📖1. 生成自有证书📖2. 安卓打包✅步骤一:导入签名文件✅步骤二:设置打包版本✅步骤三:生成签名包或APK 📖1. 生成自有证书 地址:https://www.yunedit.com/createcert 说明…

C语言编译报错error: expected specifier-qualifier-list before

C语言编译报错 error: storage class specified for parameter error: expected specifier-qualifier-list before 原因: 报错信息 "expected specifier-qualifier-list" 通常表示编译器期望在某个地方出现类型指定列表,但却没有找到。这通常…

【目标检测】使用自己的数据集训练并预测yolov8模型

1、下载yolov8的官方代码 地址: GitHub - ultralytics/ultralytics: NEW - YOLOv8 🚀 in PyTorch > ONNX > OpenVINO > CoreML > TFLite 2、下载目标检测的训练权重 yolov8n.pt 将 yolov8n.pt 放在ultralytics文件夹下 3、数据集分布 注…

【嵌入式DIY实例-ESP8266篇】-LCD ST7735显示BME280传感器数据

LCD ST7735显示BME280传感器数据 文章目录 LCD ST7735显示BME280传感器数据1、硬件准备与接线2、代码实现本文中将介绍如何使用 ESP8266 NodeMCU 板(ESP12-E 模块)和 BME280 气压、温度和湿度传感器构建气象站。 NodeMCU 微控制器 (ESP8266EX) 从 BME280 传感器读取温度、湿度…

2020 ICPC Shanghai Site B. Mine Sweeper II 题解 构造 鸽巢原理

Mine Sweeper II 题目描述 A mine-sweeper map X X X can be expressed as an n m n\times m nm grid. Each cell of the grid is either a mine cell or a non-mine cell. A mine cell has no number on it. Each non-mine cell has a number representing the number of…

大数据------JavaWeb------FilterListenerAJAXAxiosJSON

Filter Filter简介 定义:Filter表示过滤器,是JavaWeb三大组件(Servlet、Filter、Listener)之一。 作用:它可把对资源(Servlet、JSP、Html)的请求拦截下来从而实现一些特殊功能 过滤器一般完成…

Spring系统学习 - AOP之基于注解的AOP和XML的AOP

上一篇我们围绕了AOP中代理模式的使用,这篇我们将主要围绕AOP的相关术语介绍,以及重点围绕基于注解的AOP进行相关知识的概述和使用说明。 AOP的相关术语 切面(Aspect):切面是一个模块化的横切关注点,它包含…

【关于车载测试的基础知识的认知详解】

目录 一、目前车企的趋势 1. 电动化: 2. 自动驾驶技术: 3. 车联网(Connected Cars): 4. 智能化和数字化: 5. 安全性: 6. 轻量化: 7. 个性化和定制化: 8. 供应链…

C基础day7

一、思维导图 二、课后练习 1、提示并输入一个字符串&#xff0c;统计该字符串中字母、数字、空格以及其他字符的个数 #include<myhead.h> #define M 20 int main(int argc, const char *argv[]) {int sum_a0,sum_b0,sum_c0,sum_d0;char str[M];printf("please en…

Vagrant配合VirtualBox搭建虚拟机

目录 前言一、软件下载及安装1.下载2.安装扩展&#xff1a; 二、创建一个虚拟机1.Vagrant官方镜像仓库 三、使用远程工具连接虚拟机1.修改相关配置文件 四、虚拟机克隆及使用1.通用配置2.简单搭建一个java环境3.克隆虚拟机1.重命名虚拟机&#xff08;可选&#xff09;2.打包指定…

阿里发布大模型发布图结构长文本处理智能体,超越GPT-4-128k

随着大语言模型的发展&#xff0c;处理长文本的能力成为了一个重要挑战。虽然有许多方法试图解决这个问题&#xff0c;但都存在不同程度的局限性。最近&#xff0c;阿里巴巴的研究团队提出了一个名为GraphReader的新方法&#xff0c;通过将长文本组织成图结构&#xff0c;并利用…

在FPGA程序中Handshake(握手)和Register(寄存器)区别

在FPGA程序中&#xff0c;Handshake&#xff08;握手&#xff09;和Register&#xff08;寄存器&#xff09;是两种不同的通信和数据传输机制。它们各有特点和适用场景。以下是它们的区别和应用场景的详细解释&#xff1a; Register&#xff08;寄存器&#xff09; 特点&#…

入门PHP就来我这(高级)19 ~ 捕获sql错误

有胆量你就来跟着路老师卷起来&#xff01; -- 纯干货&#xff0c;技术知识分享 路老师给大家分享PHP语言的知识了&#xff0c;旨在想让大家入门PHP&#xff0c;并深入了解PHP语言。 接着上篇我们来看下sql错误的捕获模式。 1 PDO中捕获SQL语句中的错误 在PDO中有3种方法可以捕…