【matlab】周期性信号分析

news2024/9/21 19:03:56

目录

信号预处理

周期性特征提取方法

频谱分析

傅里叶变换

快速傅里叶变换(FFT)

周期图法

Welch法

自相关分析

时频分析

基于模型的方法

时间序列分解

应用实例


提取信号的周期性特征是一个在信号处理领域广泛应用的技术,特别是在分析周期性信号(如机械振动、脑电信号等)时尤为重要。以下是一些常用的提取信号周期性特征的方法和步骤:

信号预处理

  1. 去噪:由于实际信号中常含有噪声,因此在进行周期性特征提取之前,通常需要对信号进行去噪处理,以提高信号的信噪比。去噪方法包括滤波(如低通滤波、带通滤波等)、小波变换去噪等。

  2. 去趋势:对于某些信号,特别是像脑电信号这样的非平稳信号,可能包含低频趋势成分。这些趋势成分会干扰周期性特征的提取,因此需要进行去趋势处理。

周期性特征提取方法

频谱分析

频谱分析是将信号从时间域转换到频率域,以观察信号的频率成分及其分布特征的方法。

傅里叶变换

傅里叶变换(Fourier Transform, FT)是一种数学工具,用于将信号从时间域(或空间域)转换到频率域。对于周期性信号,傅里叶变换将其分解为一系列正弦和余弦函数的和,这些正弦和余弦函数的频率是原始信号频率的整数倍(即谐波)。频谱图显示了这些正弦和余弦函数的振幅(或功率)随频率的变化,频谱图中的峰值对应于信号中的周期性成分。

快速傅里叶变换(FFT)

快速傅里叶变换(Fast Fourier Transform, FFT)是傅里叶变换的一种高效实现算法。FFT通过减少计算复杂度(从O(N2)降低到O(NlogN)),使得对大规模数据集的频谱分析变得可行。FFT在信号处理、图像处理、音频分析等众多领域都有广泛应用。通过FFT,我们可以快速得到信号的频谱图,进而分析信号的频率成分。

Fs = 1000; % 采样频率为1000Hz  
N = length(data); % 数据长度  
t = (0:N-1)/Fs; % 时间向量  
  
% FFT分析  
Y = fft(data);  
P2 = abs(Y/N);  
P1 = P2(1:N/2+1);  
P1(2:end-1) = 2*P1(2:end-1);  
  
f = Fs*(0:(N/2))/N; % 频率向量  
  
% 绘图  
figure;  
plot(f,P1)   
title('Single-Sided Amplitude Spectrum of X(t)')  
xlabel('f (Hz)')  
ylabel('|P1(f)|')

周期图法

周期图法是一种基于FFT的频谱估计方法,它直接通过计算信号FFT的幅值平方来估计信号的功率谱密度(Power Spectral Density, PSD)。然而,周期图法的一个主要缺点是频谱估计的方差较大,即估计结果不够平滑。这主要是因为周期图法没有考虑数据之间的统计特性,如相关性和随机性。因此,周期图法通常适用于对频谱估计精度要求不高的情况。

% 计算 Lomb-Scargle 周期图谱
[frequencies, power] = plomb(data, time);

% 绘制周期图谱
figure;
plot(frequencies, power);
xlabel('Frequency');
ylabel('Power');
title('Lomb-Scargle Periodogram');
grid on;

Welch法

Welch法是一种改进的频谱估计方法,旨在克服周期图法频谱估计方差大的问题。Welch法通过以下几个步骤来改进频谱估计:

  1. 数据分段:将原始数据分为多个重叠的段(segment)。
  2. 加窗:对每个段应用窗函数(如汉宁窗、海明窗等),以减少频谱泄露。
  3. FFT:对每个加窗后的段进行FFT,得到各段的频谱。
  4. 平均:将所有段的频谱进行平均,以提高频谱估计的平滑度和准确性。

Welch法通过分段加窗和平均处理,有效地降低了频谱估计的方差,提高了频谱估计的精度和平滑度。因此,Welch法在需要高精度频谱估计的场合得到了广泛应用,如通信、雷达、生物医学信号处理等领域。

% 数据 data 
Fs = 1000; % 采样频率为1000Hz  
  
% Welch法频谱估计  
[pxx,f] = pwelch(data,[],[],[],Fs);  
  
% 绘图  
figure;  
plot(f,10*log10(pxx))  
title('Welch Power Spectral Density Estimate')  
xlabel('Frequency (Hz)')  
ylabel('Power/Frequency (dB/Hz)')

自相关分析

自相关函数(Autocorrelation Function, ACF)是信号与其自身在时间轴上移动(延迟)一定量后的乘积的积分(对于连续信号)或求和(对于离散信号)。它衡量了信号在不同时间点上与其过去或未来值之间的相似度。

对于离散信号x[n],其自相关函数Rxx​[m]定义为:

R_{xx}[m]=\sum\limits_{n=-\infty}^\infty x[n]\cdot x[n+m]

其中,m是延迟量,表示信号与其自身相比的偏移量。

特性

  1. 对称性:自相关函数通常是偶函数,即Rxx​[−m]=Rxx​[m]。
  2. 最大值在原点:对于大多数信号,自相关函数在m=0时取得最大值,因为此时信号与其自身完全重合。
  3. 周期性信号的周期性:如果信号是周期性的,那么其自相关函数也将是周期性的,且周期与原信号相同。特别地,在延迟等于信号周期或其整数倍时,自相关函数会出现峰值。

% 计算自相关函数
[autocorr_values, lags] = xcorr(data, 'coeff');
% 绘制自相关函数
figure;
plot(lags, autocorr_values);
xlabel('Lag');
ylabel('Autocorrelation');
title('Autocorrelation Function');
grid on;

时频分析

定义:时频分析是同时考虑信号在时间和频率域的特征,以揭示信号的时变频率特性

常用方法

  • 短时傅里叶变换(STFT):将信号划分为多个短时窗,对每个窗内的信号进行傅里叶变换,从而得到信号随时间变化的频谱。
  • 小波变换:通过选择合适的小波基函数,对信号进行多尺度分析,以揭示信号在不同时间尺度上的频率特性。
  • 希尔伯特-黄变换(HHT):包括经验模态分解(EMD)和希尔伯特谱分析,适用于非线性、非平稳信号的分析
y=data
imf=emd(y)%进行EMD分解各个固有模态函数IMF(i)


% 绘制原始信号  
figure;  
plot(t, y); % 绘制原始信号  
title('原始信号');  
xlabel('时间 (s)'); %时间单位秒
ylabel('幅值');  
grid on; 

figure; 
for i = 1:size(imf, 2) % 遍历 imf 的列
    subplot(size(imf, 2)+1, 1, i+1);  
    plot(t, imf(:,i)); % 绘制第 i 个 IMF  
    title(['IMF ', num2str(i)]);  
    xlabel('时间 (s)');  
    ylabel('幅值');  
end

基于模型的方法

定义:通过建立信号的数学模型来提取周期性特征。

常用模型

  • 自回归模型(AR):将信号表示为自身过去值的线性组合加上噪声。
  • 滑动平均模型(MA):将信号表示为噪声的线性组合,其中噪声是过去某个时刻的噪声值。
  • 自回归滑动平均模型(ARMA):结合了AR和MA的特点,是更一般的信号模型。

时间序列分解

时间序列分解是一种将时间序列数据分解成趋势、季节性和随机成分的方法。这种方法通过去除趋势和季节性成分,使得周期性特征更加突出。具体步骤如下:

  1. 去除趋势:首先,将数据中的趋势成分去除,得到去趋势序列。这有助于更清晰地观察数据的周期性变化。
  2. 去除季节性:接着,将去趋势序列中的季节性成分去除,得到季节性序列。这一步进一步剥离了影响周期性的其他因素。
  3. 分析随机成分:最后,将季节性序列中的随机成分去除,得到随机序列。虽然这一步不直接用于周期性分析,但它有助于理解数据中不可预测的波动。

时间序列分解的结果可以用于预测未来的发展趋势,通常结合回归分析、指数平滑和ARIMA模型等方法进行。

% 定义周期(例如,季节性周期为12)
period = 12;

% 使用 MATLAB 的时序分解函数进行季节性分解
decomp = seasdecomp(data, period);

% 绘制分解结果
figure;
subplot(4, 1, 1);
plot(t, data);
title('Original Data');
xlabel('Time');
ylabel('Value');

subplot(4, 1, 2);
plot(t, decomp.Trend);
title('Trend');
xlabel('Time');
ylabel('Value');

subplot(4, 1, 3);
plot(t, decomp.Season);
title('Seasonal');
xlabel('Time');
ylabel('Value');

subplot(4, 1, 4);
plot(t, decomp.Residual);
title('Residual');
xlabel('Time');
ylabel('Value');

应用实例

  • 机械振动信号:通过频谱分析和自相关分析可以提取轴承、齿轮等旋转机械部件的故障特征,如周期性脉冲冲击信号。
  • 脑电信号:通过频谱分析和时频分析可以提取脑电信号的节律性特征,如α波、β波等,这些特征对于脑功能研究和疾病诊断具有重要意义。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1911390.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深入解析【C++ list 容器】:高效数据管理的秘密武器

目录 1. list 的介绍及使用 1.1 list 的介绍 知识点: 小李的理解: 1.2 list 的使用 1.2.1 list 的构造 知识点: 小李的理解: 代码示例: 1.2.2 list 迭代器的使用 知识点: 小李的理解&#xff1…

了解Adam和RMSprop优化算法

优化算法是机器学习和深度学习模型训练中至关重要的部分。本文将详细介绍Adam(Adaptive Moment Estimation)和RMSprop(Root Mean Square Propagation)这两种常用的优化算法,包括它们的原理、公式和具体代码示例。 RMS…

学习测试6-Linux基本命令

工具 xshell 远程连接工具官方链接 VMware 虚拟机官方链接 openSUSE 操作系统 操作系统工具 MobaXterm远程终端工具 开源中文版 Linux系统 Linux发行版本:Redhat 、Fedora、CentOS属红帽子系 ubuntu发音:乌班图 (汽车领域比较多),SUSE发音:素泽尔 Deb…

【Unity2D 2022:Canvas】制作NPC

一、创建NPC角色 1. 创建JambiNPC并同时创建Jambi站立动画 (1)点击第一张图片,按住shift不松,再选中后两张图片,拖到层级面板中 (2)将动画资源文件保存到Animation Clips文件夹中 (…

策划人必读:一场关于创意与市场的深度对话

活动策划、市场推广、品牌策划、营销策划,这四者在企业营销战略中各有侧重,但又相互促进;各有千秋,但又紧密相连,共同推动着企业的成长。 下面就来一一拆解,看看它们之间是怎么互相作用,打造出…

【方法】如何打开设置了密码的ZIP文件?

对于重要的ZIP文件,很多人会设置密码保护,那要如何打开设置了密码的ZIP文件呢?今天我们一起来看下,在记得密码和忘记密码的情况下,如何打开ZIP文件。 情况1: 如果知道ZIP文件原本设置的密码,我…

【2024——CUMCM】Matlab快速入门

目录 常识 disp and input 字符串合并 sum 提取矩阵指定位置的元素 指定行列 指定行or指定列(返回行/列向量) 指定某些行 指定全部元素,按列拼接 size repmat 矩阵的运算 基本运算 形状相同的矩阵运算 每个元素同时和常数相乘或相…

【IMU】 温度零偏标定

温度标定 IMU的零偏随着温度的变化而变化,在全温范围内形状各异,有些可能是单调的,有些可能出现拐点。 多项式误差温度标定 目的是对估计的参数进行温度补偿,获取不同温度时的参数值(零偏、尺度、正交)&…

关于10G光模块中SR, LR, LRM, ER 和 ZR的区别?

在10Gbps(10千兆比特每秒)光模块中,SR、LR、LRM、ER 和 ZR 是用来描述不同类型的模块及其适用的传输距离和光纤类型。下面是这些缩写的详细解释: 1.SR (Short Range) 2.LR (Long Range) 3.LRM (Long Reach Multimode) 4.ER (E…

移除元素的讲解,看这篇就够了!

一:题目 博主本文将用指向来形象的表示下标位的移动。 二:思路 1:两个整形,一个start,一个end,在一开始都 0,即这里都指向第一个元素。 2:在查到val之前,查一个&…

[数仓]七、离线数仓(PrestoKylin即席查询)

第1章 Presto 1.1 Presto简介 1.1.1 Presto概念 1.1.2 Presto架构 1.1.4 Presto、Impala性能比较 Presto、Impala性能比较_presto和impala对比-CSDN博客 测试结论:Impala性能稍领先于Presto,但是Presto在数据源支持上非常丰富,包括Hive、图数据库、传统关系型数据库、Re…

CentOS 8升级gcc版本

1、查看gcc版本 gcc -v发现gcc版本为8.x.x,而跑某个项目的finetune需要gcc-9,之前搜索过很多更新gcc版本的方式,例如https://blog.csdn.net/xunye_dream/article/details/108918316?spm1001.2014.3001.5506,但执行指令 sudo yu…

FastAPI是一个现代、快速(高性能)的Web框架

FastAPI是一个现代、快速(高性能)的Web框架,专门用于构建基于Python的API。以下是对FastAPI的详细介绍: 一、基本概述 定义与用途:FastAPI是一个开源项目,基于Starlette和Pydantic库构建而成,…

推出全新的无线通讯模块(1SJ型、2DT-158型、2GT-001型、1YN型、2AE型)助力物联网新发展

相关型号:LBAA0QB1SJ-296 LBAA0XV2DT-158 LBAA0XV2GT-001 LBEE5KL1YN-814 LBEE5PK2AE-564 全新的无线通讯模块(1SJ型、2DT-158型、2GT-001型、1YN型、2AE型)助力物联网新发展(明佳达) 1、1SJ型集成LoRaWAN调制解调器…

【1】A-Frame整体介绍

1.A-Frame是什么? A-Frame 是一个用于构建虚拟现实 (VR) 体验的 Web 框架。 A-Frame 基于 HTML 之上,因此上手简单。但 A-Frame 不仅仅是 3D 场景图或标记语言;它还是一种标记语言。其核心是一个强大的实体组件框架,为 Three.js …

QT文件生成可执行的exe程序

将qt项目生成可执行的exe程序可按照以下步骤进行: 1、在qt中构建运行生成.exe文件; 2、从自定义的路径中取出exe文件放在一个单独的空文件夹中(exe文件在该文件夹中的release文件夹中); 3、从开始程序中搜索qt&#xf…

HumanoidBench——模拟仿人机器人算法有未来

概述 论文地址:https://arxiv.org/pdf/2403.10506 仿人机器人具有类似人类的外形,有望在各种环境和任务中为人类提供支持。然而,昂贵且易碎的硬件是这项研究面临的挑战。因此,本研究开发了使用先进模拟技术的 HumanoidBench。该基…

Java文件操作和IO的小案例

文章目录 案例1案例2案例3 案例1 要求: 扫描指定目录,并找到名称中包含指定字符的所有普通文件(不包含目录),并且后续询问用户是否要删除该文件。 代码实现: package shixun;import java.io.File; import…

deepstream段错误

😐 错误: 探针中由于使用了pyds.get_nvds_buf_surface(hash(gst_buffer), frame_meta.batch_id)导致的段错误(segmentation fault)。 解决方式:

electron src build

编译文档: 构建说明 | Electron 1 下载depot_tools (1)安装depot_tools用于获取 Chromium 及其依赖项的工具集:地址 WINDOWS Download the depot_tools bundle and extract it somewhere. (2)在 Windows 上,您需要…