tensorflow框架之会话、张量、变量OP

news2024/7/6 19:31:31

2.3 会话、张量、变量OP

学习目标

  • 目标
    • 应用sess.run或者eval运行图程序并获取张量值
    • 应用feed_dict机制实现运行时填充数据
    • 应用placeholder实现创建占位符
    • 知道常见的TensorFlow创建张量
    • 知道常见的张量数学运算操作
    • 说明numpy的数组和张量相同性
    • 说明张量的两种形状改变特点
    • 应用set_shape和tf.reshape实现张量形状的修改
    • 应用tf.matmul实现张量的矩阵运算修改
    • 应用tf.cast实现张量的类型
    • 说明变量op的特殊作用
    • 说明变量op的trainable参数的作用
    • 应用global_variables_initializer实现变量op的初始化
  • 应用
  • 内容预览

2.3.1 会话

一个运行TensorFlow operation的类。会话包含以下两种开启方式

  • tf.Session:用于完整的程序当中
  • tf.InteractiveSession:用于交互式上下文中的TensorFlow ,例如shell

1 TensorFlow 使用 tf.Session 类来表示客户端程序(通常为 Python 程序,但也提供了使用其他语言的类似接口)与 C++ 运行时之间的连接

2 tf.Session 对象使用分布式 TensorFlow 运行时提供对本地计算机中的设备和远程设备的访问权限。

2.3.1.1 __init__(target='', graph=None, config=None)

会话可能拥有的资源,如 tf.Variable,tf.QueueBase和tf.ReaderBase。当这些资源不再需要时,释放这些资源非常重要。因此,需要调用tf.Session.close会话中的方法,或将会话用作上下文管理器。以下两个例子作用是一样的:

def session_demo():
    """
    会话演示
    :return:
    """

    a_t = tf.constant(10)
    b_t = tf.constant(20)
    # 不提倡直接运用这种符号运算符进行计算
    # 更常用tensorflow提供的函数进行计算
    # c_t = a_t + b_t
    c_t = tf.add(a_t, b_t)
    print("tensorflow实现加法运算:\n", c_t)

    # 开启会话
    # 传统的会话定义
    # sess = tf.Session()
    # sum_t = sess.run(c_t)
    # print("sum_t:\n", sum_t)
    # sess.close()

    # 开启会话
    with tf.Session() as sess:
        # sum_t = sess.run(c_t)
        # 想同时执行多个tensor
        print(sess.run([a_t, b_t, c_t]))
        # 方便获取张量值的方法
        # print("在sess当中的sum_t:\n", c_t.eval())
        # 会话的图属性
        print("会话的图属性:\n", sess.graph)

    return None
  • target:如果将此参数留空(默认设置),会话将仅使用本地计算机中的设备。可以指定 grpc:// 网址,以便指定 TensorFlow 服务器的地址,这使得会话可以访问该服务器控制的计算机上的所有设备。
  • graph:默认情况下,新的 tf.Session 将绑定到当前的默认图。
  • config:此参数允许您指定一个 tf.ConfigProto 以便控制会话的行为。例如,ConfigProto协议用于打印设备使用信息
# 运行会话并打印设备信息
sess = tf.Session(config=tf.ConfigProto(allow_soft_placement=True,
                                        log_device_placement=True))

会话可以分配不同的资源在不同的设备上运行。

/job:worker/replica:0/task:0/device:CPU:0

device_type:类型设备(例如CPU,GPU,TPU)

2.3.1.2 会话的run()

  • run(fetches,feed_dict=None, options=None, run_metadata=None)
    • 通过使用sess.run()来运行operation
    • fetches:单一的operation,或者列表、元组(其它不属于tensorflow的类型不行)
    • feed_dict:参数允许调用者覆盖图中张量的值,运行时赋值
      • 与tf.placeholder搭配使用,则会检查值的形状是否与占位符兼容。

使用tf.operation.eval()也可运行operation,但需要在会话中运行

# 创建图
a = tf.constant(5.0)
b = tf.constant(6.0)
c = a * b

# 创建会话
sess = tf.Session()

# 计算C的值
print(sess.run(c))
print(c.eval(session=sess))

2.3.1.3 feed操作

  • placeholder提供占位符,run时候通过feed_dict指定参数
def session_run_demo():
    """
    会话的run方法
    :return:
    """
    # 定义占位符
    a = tf.placeholder(tf.float32)
    b = tf.placeholder(tf.float32)
    sum_ab = tf.add(a, b)
    print("sum_ab:\n", sum_ab)
    # 开启会话
    with tf.Session() as sess:
        print("占位符的结果:\n", sess.run(sum_ab, feed_dict={a: 3.0, b: 4.0}))
    return None

请注意运行时候报的错误error:

RuntimeError:如果这Session是无效状态(例如已关闭)。
TypeError:如果fetches或者feed_dict键的类型不合适。
ValueError:如果fetches或feed_dict键无效或引用 Tensor不存在的键。

在编写 TensorFlow 程序时,程序传递和运算的主要目标是tf.Tensor

2.3.2 张量(Tensor)

TensorFlow 的张量就是一个 n 维数组, 类型为tf.Tensor。Tensor具有以下两个重要的属性

  • type:数据类型
  • shape:形状(阶)

2.3.2.1 张量的类型

 

 

2.3.2.2 张量的阶

 

 

形状有0阶、1阶、2阶….

tensor1 = tf.constant(4.0)
tensor2 = tf.constant([1, 2, 3, 4])
linear_squares = tf.constant([[4], [9], [16], [25]], dtype=tf.int32)

print(tensor1.shape)
# 0维:()   1维:(10, )   2维:(3, 4)   3维:(3, 4, 5)

2.3.3 创建张量的指令

  • 固定值张量

 

 

  • 随机值张量

 

 

  • 其它特殊的创建张量的op
    • tf.Variable
    • tf.placeholder

2.3.4 张量的变换

2.3.4.1 类型改变

 

 

2.3.4.2 形状改变

TensorFlow的张量具有两种形状变换,动态形状和静态形状

  • tf.reshape
  • tf.set_shape

关于动态形状和静态形状必须符合以下规则

  • 静态形状
    • 转换静态形状的时候,1-D到1-D,2-D到2-D,不能跨阶数改变形状
    • 对于已经固定的张量的静态形状的张量,不能再次设置静态形状
  • 动态形状
    • tf.reshape()动态创建新张量时,张量的元素个数必须匹配
def tensor_demo():
    """
    张量的介绍
    :return:
    """
    a = tf.constant(value=30.0, dtype=tf.float32, name="a")
    b = tf.constant([[1, 2], [3, 4]], dtype=tf.int32, name="b")
    a2 = tf.constant(value=30.0, dtype=tf.float32, name="a2")
    c = tf.placeholder(dtype=tf.float32, shape=[2, 3, 4], name="c")
    sum = tf.add(a, a2, name="my_add")
    print(a, a2, b, c)
    print(sum)
    # 获取张量属性
    print("a的图属性:\n", a.graph)
    print("b的名字:\n", b.name)
    print("a2的形状:\n", a2.shape)
    print("c的数据类型:\n", c.dtype)
    print("sum的op:\n", sum.op)

    # 获取静态形状
    print("b的静态形状:\n", b.get_shape())

    # 定义占位符
    a_p = tf.placeholder(dtype=tf.float32, shape=[None, None])
    b_p = tf.placeholder(dtype=tf.float32, shape=[None, 10])
    c_p = tf.placeholder(dtype=tf.float32, shape=[3, 2])
    # 获取静态形状
    print("a_p的静态形状为:\n", a_p.get_shape())
    print("b_p的静态形状为:\n", b_p.get_shape())
    print("c_p的静态形状为:\n", c_p.get_shape())

    # 形状更新
    # a_p.set_shape([2, 3])
    # 静态形状已经固定部分就不能修改了
    # b_p.set_shape([10, 3])
    # c_p.set_shape([2, 3])

    # 静态形状已经固定的部分包括它的阶数,如果阶数固定了,就不能跨阶更新形状
    # 如果想要跨阶改变形状,就要用动态形状
    # a_p.set_shape([1, 2, 3])
    # 获取静态形状
    print("a_p的静态形状为:\n", a_p.get_shape())
    print("b_p的静态形状为:\n", b_p.get_shape())
    print("c_p的静态形状为:\n", c_p.get_shape())

    # 动态形状
    # c_p_r = tf.reshape(c_p, [1, 2, 3])
    c_p_r = tf.reshape(c_p, [2, 3])
    # 动态形状,改变的时候,不能改变元素的总个数
    # c_p_r2 = tf.reshape(c_p, [3, 1])
    print("动态形状的结果:\n", c_p_r)
    # print("动态形状的结果2:\n", c_p_r2)
    return None

2.3.5 张量的数学运算

  • 算术运算符
  • 基本数学函数
  • 矩阵运算
  • reduce操作
  • 序列索引操作

详细请参考: https://www.tensorflow.org/versions/r1.8/api_guides/python/math_ops

这些API使用,我们在使用的时候介绍,具体参考文档

2.3.6 变量

TensorFlow变量是表示程序处理的共享持久状态的最佳方法。变量通过 tf.Variable OP类进行操作。变量的特点:

  • 存储持久化
  • 可修改值
  • 可指定被训练

2.3.6.1 创建变量

  • tf.Variable(initial_value=None,trainable=True,collections=None,name=None)
    • initial_value:初始化的值
    • trainable:是否被训练
    • collections:新变量将添加到列出的图的集合中collections,默认为[GraphKeys.GLOBAL_VARIABLES],如果trainable是True变量也被添加到图形集合 GraphKeys.TRAINABLE_VARIABLES
  • 变量需要显式初始化,才能运行值
def variable_demo():
    """
    变量的演示
    :return:
    """
    # 定义变量
    a = tf.Variable(initial_value=30)
    b = tf.Variable(initial_value=40)
    sum = tf.add(a, b)

    # 初始化变量
    init = tf.global_variables_initializer()

    # 开启会话
    with tf.Session() as sess:
        # 变量初始化
        sess.run(init)
        print("sum:\n", sess.run(sum))

    return None

2.3.6.2 使用tf.variable_scope()修改变量的命名空间

会在OP的名字前面增加命名空间的指定名字

with tf.variable_scope("name"):
    var = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)
    var_double = tf.Variable(name='var', initial_value=[4], dtype=tf.float32)

<tf.Variable 'name/var:0' shape=() dtype=float32_ref>
<tf.Variable 'name/var_1:0' shape=() dtype=float32_ref>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/190475.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

前言技术之OAuth2.0

1、什么是OAuth2.0 OAuth2.0是目前使用非常广泛的授权机制&#xff0c;用于授权第三方应用获取用户的数据。 举例说明&#xff1a; 用户可以通过选择其他登录方式来使用gitee&#xff0c;这里就使用到了第三方认证。 OAuth 引入了一个授权层&#xff0c;用来分离两种不同的角…

记录--手把手教学,实现一个优雅的图片预览

这里给大家分享我在网上总结出来的一些知识&#xff0c;希望对大家有所帮助 在我们开发项目中&#xff0c;经常会遇到预览图片的需求。也就是点击图片&#xff0c;会全屏显示该图片。需求很简单&#xff0c;但是如何让实现更优雅就需要花点心思了。 最终效果图 基础版本 实现方…

从 Issue 看 El-Table 源码,给 Element+ 提 Pr 的背后竟如此坎坷

Element Plus大家应该都不陌生&#xff0c;用过 el-table 的伙伴更是多数&#xff0c;毕竟搞ToB业务 table 必不可少&#xff0c;但是真正翻看过源码的应该还是少数&#xff0c;有没有对其内部实现怀揣着一点点好奇呢&#xff1f;笔者就是因为怀揣着好奇&#xff0c;所以才走上…

什么是Intel Elkhart Lake?专用于物联网的处理器系列

随着世界向工业4.0过渡&#xff0c;边缘计算应用程序对实时推理、连接和数据遥测的更高性能和更低功耗处理的需求激增&#xff0c;并加强了加固。物联网和边缘计算的爆炸性增长造成了上一代处理器无法维持的性能瓶颈和限制。英特尔最新推出的Atom x6000 E系列、奔腾和赛扬N&…

IDEA无法使用Git Pull的问题

一、问题描述 我们开发项目时&#xff0c;经常会和第三方接口打交道&#xff0c;有些第三方项目为了安全起见&#xff0c;会把项目部署在"内网"环境&#xff0c;不对外暴露&#xff0c;通常会提供VPN代理才能访问到资源。 而在项目中我就因为这个而遇到了一个问题&am…

RK3568平台开发系列讲解(Linux系统篇)什么是Linux文件

🚀返回专栏总目录 文章目录 一、文件描述符二、常用文件 I/O 操作和函数2.1、open2.2、close2.3、read2.4、write沉淀、分享、成长,让自己和他人都能有所收获!😄 📢 Linux 把大部分系统资源当作文件呈现给用户,用户只需按照文件 I/O 的方式,就能完成数据的输入输出。…

Diffusion 扩散模型(DDPM)详解及torch复现

文章目录torch复现第1步&#xff1a;正向过程噪声调度器Step 2: 反向传播 U-NetStep 3: 损失函数采样Training我公众号文章目录综述&#xff1a;https://wangguisen.blog.csdn.net/article/details/127065903 保姆级讲解 Diffusion 扩散模型&#xff08;DDPM&#xff09; ht…

python面向对象:入门

python面向对象&#xff1a;入门 文章目录python面向对象&#xff1a;入门一、实验目的二、实验原理三、实验环境四、实验内容五、实验步骤1.创建类和对象2.构造方法3.类中的实例方法一、实验目的 掌握类的基本使用 二、实验原理 面向过程&#xff1a;根据业务逻辑从上到下写…

Win10 BCD文件损坏怎么修复?

在Windows 10操作系统中&#xff0c;BCD代表引导配置数据&#xff08;Boot Configuration Data&#xff09;&#xff0c;Windows运行时BCD将告诉Windows引导加载程序在哪里查找引导信息&#xff0c; 因此&#xff0c;它对成功地加载和运行操作系统是非常重要的。哪些情况下会导…

二叉树的前序遍历

题目144. 二叉树的前序遍历 - 力扣&#xff08;LeetCode&#xff09;本章我们来探讨运用二叉树中所学的知识解决本题。对二叉树仍有疑问的小伙伴可以点击下方链接哦。参考文献&#xff1a;(1条消息) 二叉树&#xff08;三&#xff09;_染柒_GRQ的博客-CSDN博客原理首先我们来回…

CyberBattleSim-(内网自动化渗透)研究分析

**01 **背景知识介绍 CyberBattleSim介绍 CyberBattleSim是一款微软365 Defender团队开源的人工智能攻防对抗模拟工具&#xff0c;来源于微软的一个实验性研究项目。该项目专注于对网络攻击入侵后横向移动阶段进行威胁建模&#xff0c;用于研究在模拟抽象企业网络环境中运行的…

基于蜣螂算法优化的核极限学习机(KELM)分类算法-附代码

基于蜣螂算法优化的核极限学习机(KELM)分类算法 文章目录基于蜣螂算法优化的核极限学习机(KELM)分类算法1.KELM理论基础2.分类问题3.基于蜣螂算法优化的KELM4.测试结果5.Matlab代码摘要&#xff1a;本文利用蜣螂算法对核极限学习机(KELM)进行优化&#xff0c;并用于分类1.KELM理…

R语言贝叶斯方法在生态环境领域中的应用

贝叶斯统计已经被广泛应用到物理学、生态学、心理学、计算机、哲学等各个学术领域&#xff0c;其火爆程度已经跨越了学术圈&#xff0c;如促使其自成统计江湖一派的贝叶斯定理在热播美剧《The Big Bang Theory》中都要秀一把。贝叶斯统计学即贝叶斯学派是一门基本思想与传统基于…

STM32CubeMx使用FreeRTOS搭建printf输出串口打印-----基于正点原子开发板阿波罗

文章目录STM32CubeMx使用FreeRTOS搭建printf输出串口打印-----基于正点原子开发板阿波罗1.输入目标芯片2.选择RCC时钟3.配置调试模式4.USART的配置5.配置中断6.printf的重定向功能7.代码添加8.修改中断函数9.添加全局变量10.增加FreeRTOS支持11.在FreeRTOS中添加源码STM32CubeM…

【数学建模】数学建模中的常用工具推荐

前言 整理了几款我在建模比赛中需要准备的小工具&#xff0c;后续会随时不定期更新&#xff0c;以及完善内容&#xff0c;需要的小伙伴建议收藏一波~ [1] 公式编译器 Axmath&#xff08;建议购买正版&#xff09;mathtypeWord内置的公式编辑器 Axmath是国产的软件&#xff0…

pytorch安装(模式识别与图像处理课程实验)

pytorch安装&#xff08;模式识别与图像处理课程实验&#xff09;1、 打开cmd&#xff0c;创建torch虚拟环境。2、 激活创建的torch虚拟环境2.1、 进入pytorch官网&#xff0c;复制如下的命令&#xff0c;进行pytorch的安装2.2、测试安装是否成功3、 通过pip命令安装pytorch&am…

基于WPS实现Excel表的二级下拉选择框

基于WPS实现Excel表的二级下拉选择框第一步&#xff1a;先在sheet2上创建源数据第二步&#xff1a;创建一级下拉框第三步&#xff1a;创建二级下拉框报错记录&#xff1a; “列表源”XXXXXX第一步&#xff1a;先在sheet2上创建源数据 第二步&#xff1a;创建一级下拉框 一级下…

难受啊,备战字节跳动132天,因为一个疏忽让我前功尽弃...

&#x1f4cc; 博客主页&#xff1a; 程序员二黑 &#x1f4cc; 专注于软件测试领域相关技术实践和思考&#xff0c;持续分享自动化软件测试开发干货知识&#xff01; &#x1f4cc; 如果你也想学习软件测试&#xff0c;文末卡片有我的交流群&#xff0c;加入我们&#xff0c;一…

Kibana报错:Kibana server is not ready yet

背景 网页中访问kinaba http://localhost:5601 ,一直提示“Kibana server is not ready yet”。 执行如下命令查看kibana日志&#xff0c; docker logs kibana 发现有提示&#xff1a; 正文 怀疑是不是容器重启后&#xff0c;各容器内部ip变化了导致。 1、故执行如下命令查看…

Android框架源码分析——从设计模式角度看 RxJava 核心源码

从设计模式角度来看 RxJava 核心源码 从订阅者模式和装饰器模式的角度来看 RxJava 源码。 1. 普通订阅者模式与 RxJava 中的订阅者模式 订阅者模式又叫做观察者模式&#xff0c;主要用于实现响应式编程。其本质&#xff0c;就是接口回调。 普通订阅者模式&#xff1a;多个对…