CosyVoice多语言、音色和情感控制模型,one-shot零样本语音克隆模型本地部署(Win/Mac),通义实验室开源

news2024/11/25 12:53:01

在这里插入图片描述

近日,阿里通义实验室开源了CosyVoice语音模型,它支持自然语音生成,支持多语言、音色和情感控制,在多语言语音生成、零样本语音生成、跨语言声音合成和指令执行能力方面表现卓越。

CosyVoice采用了总共超15万小时的数据训练,支持中英日粤韩5种语言的合成,合成效果显著优于传统语音合成模型。

CosyVoice支持one-shot音色克隆 :仅需要3~10s的原始音频,即可生成模拟音色,甚至包括韵律、情感等细节。在跨语种的语音合成中,也有不俗的表现。

由于官方的版本暂不支持Windows和Mac平台,本次我们分别在这两个平台本地部署CosyVoice。

Windows平台

首先来到windows平台,克隆项目:

git clone https://github.com/v3ucn/CosyVoice_For_Windows

进入项目:

cd CosyVoice_For_Windows

生成内置模块:

git submodule update --init --recursive

随后安装依赖:

conda create -n cosyvoice python=3.11  
conda activate cosyvoice  
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com

官方推荐的Python版本是3.8,实际上3.11也是可以跑起来的,并且理论上3.11的性能更好。

随后下载deepspeed的windows版本安装包来进行安装:

https://github.com/S95Sedan/Deepspeed-Windows/releases/tag/v14.0%2Bpy311

最后,安装gpu版本的torch:

pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121

这里cuda的版本选择12,也可以安装11的。

随后下载模型:

# git模型下载,请确保已安装git lfs  
mkdir -p pretrained_models  
git clone https://www.modelscope.cn/iic/CosyVoice-300M.git pretrained_models/CosyVoice-300M  
git clone https://www.modelscope.cn/iic/CosyVoice-300M-SFT.git pretrained_models/CosyVoice-300M-SFT  
git clone https://www.modelscope.cn/iic/CosyVoice-300M-Instruct.git pretrained_models/CosyVoice-300M-Instruct  
git clone https://www.modelscope.cn/speech_tts/speech_kantts_ttsfrd.git pretrained_models/speech_kantts_ttsfrd

由于使用国内的魔搭仓库,所以速度非常快

最后添加环境变量:

set PYTHONPATH=third_party/AcademiCodec;third_party/Matcha-TTS

基础用法:

from cosyvoice.cli.cosyvoice import CosyVoice  
from cosyvoice.utils.file_utils import load_wav  
import torchaudio  
  
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M-SFT')  
# sft usage  
print(cosyvoice.list_avaliable_spks())  
output = cosyvoice.inference_sft('你好,我是通义生成式语音大模型,请问有什么可以帮您的吗?', '中文女')  
torchaudio.save('sft.wav', output['tts_speech'], 22050)  
  
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M')  
# zero_shot usage  
prompt_speech_16k = load_wav('zero_shot_prompt.wav', 16000)  
output = cosyvoice.inference_zero_shot('收到好友从远方寄来的生日礼物,那份意外的惊喜与深深的祝福让我心中充满了甜蜜的快乐,笑容如花儿般绽放。', '希望你以后能够做的比我还好呦。', prompt_speech_16k)  
torchaudio.save('zero_shot.wav', output['tts_speech'], 22050)  
# cross_lingual usage  
prompt_speech_16k = load_wav('cross_lingual_prompt.wav', 16000)  
output = cosyvoice.inference_cross_lingual('<|en|>And then later on, fully acquiring that company. So keeping management in line, interest in line with the asset that\'s coming into the family is a reason why sometimes we don\'t buy the whole thing.', prompt_speech_16k)  
torchaudio.save('cross_lingual.wav', output['tts_speech'], 22050)  
  
cosyvoice = CosyVoice('speech_tts/CosyVoice-300M-Instruct')  
# instruct usage  
output = cosyvoice.inference_instruct('在面对挑战时,他展现了非凡的<strong>勇气</strong>与<strong>智慧</strong>。', '中文男', 'Theo \'Crimson\', is a fiery, passionate rebel leader. Fights with fervor for justice, but struggles with impulsiveness.')  
torchaudio.save('instruct.wav', output['tts_speech'], 22050)

这里推荐使用webui,更加直观和方便:

python3 webui.py --port 9886 --model_dir ./pretrained_models/CosyVoice-300M

访问 http://localhost:9886

需要注意的是,官方的torch的backend使用的是sox,这里改成了soundfile:

torchaudio.set_audio_backend('soundfile')

可能会有一些bug,后续还请关注官方的项目更新。

MacOS平台

现在来到MacOs平台,还是先克隆项目:

git clone https://github.com/v3ucn/CosyVoice_for_MacOs.git

安装依赖:

cd CosyVoice_for_MacOs  
conda create -n cosyvoice python=3.8  
conda activate cosyvoice  
pip install -r requirements.txt -i https://mirrors.aliyun.com/pypi/simple/ --trusted-host=mirrors.aliyun.com

随后需要通过Homebrew安装sox:

brew install sox

如此就配置好了,但是别忘了添加环境变量:

export PYTHONPATH=third_party/AcademiCodec:third_party/Matcha-TTS

使用方式和Windows版本保持一致。

这里还是推荐使用webui:

python3 webui.py --port 50000 --model_dir speech_tts/CosyVoice-300M

访问 http://localhost:50000

结语

平心而论,CosyVoice不愧是大厂出品,模型的品质没的说,代表了国内AI的最高水准,通义实验室名下无虚,当然,如果能将工程化之后的代码也开源出来,那就更好了,相信经过libtorch的优化,这个模型将会是开源TTS的不二选择。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1904098.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

fasttext工具介绍

fastText是由Facebook Research团队于2016年开源的一个词向量计算和文本分类工具。尽管在学术上并未带来巨大创新&#xff0c;但其在实际应用中的表现却非常出色&#xff0c;特别是在文本分类任务中&#xff0c;fastText往往能以浅层网络结构取得与深度网络相媲美的精度&#x…

Git中两个开发分支merge的原理

一 分支合并 1.1 原理 分支合并&#xff1a;就是将A分支修改后且commit的内容&#xff0c;合并到B分支&#xff0c;这些修改且提交的内容和B分支对应的内容和位置进行比较&#xff1a; 1.不一样的话&#xff0c;提示冲突&#xff0c;需要人工干预。 2.一样的话&#xff0c;…

【深入理解JVM】关于Object o = new Object()

1. 解释一下对象的创建过程 “半初始化”状态通常指的是对象在内存分配后、但在完全初始化之前的一种状态。在Java中&#xff0c;虽然JVM的规范和设计努力避免对象处于这种不稳定的状态&#xff0c;但在多线程环境下&#xff0c;由于指令重排序等并发问题&#xff0c;仍有可能…

Arduino ESP8266 开发环境搭建

Arduino ESP8266 开发环境搭建 很久之前学嵌入式时&#xff0c;用过Arduino8266进行开发&#xff0c;开发成本低、难度小&#xff0c;体验很不错。 近期&#xff0c;又突然要用&#xff0c;遂再次搭建环境&#xff0c;但变动挺多&#xff0c;有些小波折&#xff0c;开贴记录。…

【YOLOv9教程】如何使用YOLOv9进行图像与视频检测

《博主简介》 小伙伴们好&#xff0c;我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。 ✌更多学习资源&#xff0c;可关注公-仲-hao:【阿旭算法与机器学习】&#xff0c;共同学习交流~ &#x1f44d;感谢小伙伴们点赞、关注&#xff01; 《------往期经典推…

强化学习中的Double DQN、Dueling DQN和PER DQN算法详解及实战

1. 深度Q网络&#xff08;DQN&#xff09;回顾 DQN通过神经网络近似状态-动作值函数&#xff08;Q函数&#xff09;&#xff0c;在训练过程中使用经验回放&#xff08;Experience Replay&#xff09;和固定目标网络&#xff08;Fixed Target Network&#xff09;来稳定训练过程…

【踩坑】修复pyinstaller报错 No module named pkg_resources.extern

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你&#xff0c;欢迎[点赞、收藏、关注]哦~ 报错如下&#xff1a; 修复方法&#xff1a; pip install --upgrade setuptools pippyinstaller -F -w main.py --hidden-importpkg_resources.py2_wa…

VMware安装centos9详细教程(保姆级)

前言 centos9最新的centos版本&#xff0c;在近期的使用中发现它的操作界面与以往的centos7/8更加舒适&#xff0c;界面优化更加精细 项目终止日期&#xff08;EOL&#xff09; 从公告可知&#xff0c;CentOS 项目重心从 CentOS Linux 转移到了 CentOS Stream。下面是各个项…

Spring的核心概念理解案列

IDEA开发的简单“登陆成功”小项目 IDEA项目结构&#xff1a; 每一部分代码和相应的解读&#xff1a; com.itTony文件下有dao&#xff08;实体&#xff09;层&#xff0c;service&#xff08;服务&#xff09;层&#xff0c;编写的2个类&#xff08;HelloSpring和TestSpring&…

ORA-12170: TNS:连接超时

今天在oracle数据库搭建连接远程数据库的dbink时&#xff0c;发现搭建失败报错&#xff1a;ORA-12170: TNS:连接超时 但是是能够ping的通远程数据库地址的。 telnet 172.18.6.104 1522要求查看下创建dblink语句&#xff0c;也确认创建语句无误。 (DESCRIPTION (ADDRESS_LIST…

使用labelme中的AI多边形(AI-polygon)标注 win版exe Create AI-Polygon闪退

这里写目录标题 虚拟环境创建labelme虚拟环境下载AI标注模型win Labelme.exe Create AI-Polygon闪退问题也用如下方法解决 win Labelme.exe Create AI-Polygon闪退问题也用如下方法解决愉快地使用labelme的AI标注工具 虚拟环境 创建labelme虚拟环境 创建基础环境并激活 cond…

顺序表的介绍

前言 大家好&#xff0c;作者菌又来了&#xff0c;今天我们开始顺序表的学习&#xff0c;今天的内容十分的简单&#xff0c;就是带领大家简单了解顺序表&#xff0c;那好话不多说&#xff0c;直接开始我们今天的正题&#xff01;&#xff01; 1.顺序表的概念和结构 线性表…

驾校管理系统的全面革新与升级

智慧驾校系统是一款专为现代驾校量身定制的综合性管理平台,它深度融合了云计算、大数据、物联网及人工智能等前沿技术,旨在为驾校打造一个高效、智能、便捷的运营生态系统。该系统通过数字化、信息化的手段,彻底革新了传统驾校的管理模式,不仅极大地提升了驾校的运营效率,…

智慧校园-基础平台功能总体概述

智慧校园基础平台是现代教育信息化的核心&#xff0c;它集成了系统管理、基础数据、系统监控、系统工具、流程管理等关键功能&#xff0c;构建了一个全面、智能、安全的校园生态系统。系统管理部分&#xff0c;通过权限管理和用户管理&#xff0c;实现了对用户访问权限的精细化…

【Qt】Qt开发环境搭建

目录 一. Qt SDK的下载&安装 二. Qt相关工具介绍 Qt的常用开发工具有&#xff1a; Qt CreatorVisual StudioEclipse 一. Qt SDK的下载&安装 Qt 下载官网&#xff1a; http://download.qt.io/archive/qt/ 国内清华源: https://mirrors.tuna.tsinghua.edu.cn/qt/arc…

freemarker生成pdf,同时pdf插入页脚,以及数据量大时批量处理

最近公司有个需求&#xff0c;就是想根据一个模板生成一个pdf文档&#xff0c;当即我就想到了freemarker这个远古老东西&#xff0c;毕竟freemarker在模板渲染方面还是非常有优势的。 准备依赖&#xff1a; <dependency><groupId>org.springframework.boot</gr…

【讲解下iOS语言基础】

&#x1f308;个人主页: 程序员不想敲代码啊 &#x1f3c6;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f44d;点赞⭐评论⭐收藏 &#x1f91d;希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出指正&#xff0c;让我们共…

【论文阅读】-- Visual Traffic Jam Analysis Based on Trajectory Data

基于轨迹数据的可视化交通拥堵分析 摘要1 引言2 相关工作2.1 交通事件检测2.2 交通可视化2.3 传播图可视化 3 概述3.1 设计要求3.2 输入数据说明3.3 交通拥堵数据模型3.4 工作流程 4 预处理4.1 路网处理4.2 GPS数据清理4.3 地图匹配4.4 道路速度计算4.5 交通拥堵检测4.6 传播图…

Halcon 产品周围缺口检测

*读取一张图像read_image (Image, 原图.jpg)*获取图像大小get_image_size(Image, Width, Height)*关闭已经打开的窗口dev_close_window ()*打开新窗口dev_open_window(0, 0, Width, Height, black, WindowHandle) //打开指定大小的窗口*对图像进行阈值操作threshold (Image, R…

C语言 指针和数组—指针数组及其在字符串处理中的应用

目录 问题的提出 问题的解决 回头看——指针、数组及其他类型的混合 指针数组与指向数组的指针 字符串的排序 问题的提出 问题的解决 回头看——指针、数组及其他类型的混合  基本数据类型  int 、 long 、 char 、 short 、 float 、 double……  数组是一种从…