Qt源码解析之QObject

news2024/11/29 2:40:39

省去大部分virtual和public方法后,Qobject主要剩下以下成员:

//qobject.h
class Q_CORE_EXPORT Qobject{
    Q_OBJECT
    Q_PROPERTY(QString objectName READ objectName WRITE setObjectName NOTIFY objectNameChanged)
    Q_DECLARE_PRIVATE(QObject)
public:
    Q_INVOKABLE explicit QObject(QObject *parent=nullptr);
    virtual ~QObject();
    //...
protected:
    QObject(QObjectPrivate &dd, QObject *parent = nullptr);
    //...
protected:
    QScopedPointer<QObjectData> d_ptr;
    static const QMetaObject staticQtMetaObject;
    //...
private:
    Q_DISABLE_COPY(QObject)
    //...
}

一、Q_OBJECT

#define Q_OBJECT \
public: \
    QT_WARNING_PUSH \
    Q_OBJECT_NO_OVERRIDE_WARNING \
    static const QMetaObject staticMetaObject; \
    virtual const QMetaObject *metaObject() const; \
    virtual void *qt_metacast(const char *); \
    virtual int qt_metacall(QMetaObject::Call, int, void **); \
    QT_TR_FUNCTIONS \
private: \
    Q_OBJECT_NO_ATTRIBUTES_WARNING \
    Q_DECL_HIDDEN_STATIC_METACALL static void qt_static_metacall(QObject *, QMetaObject::Call, int, void **); \
    QT_WARNING_POP \
    struct QPrivateSignal {}; \
    QT_ANNOTATE_CLASS(qt_qobject, "")


1、宏 QT_WARNING_PUSH 和 QT_WARNING_POP用于保存和恢复编译器的警告状态,以便在宏定义内部做一些修改或设置,而不影响用户定义的警告状态。
2、Q_OBJECT_NO_OVERRIDE_WARNING和Q_OBJECT_NO_ATTRIBUTES_WARNING这两个宏用于控制是否发出关于未覆盖(override)的警告或者关于某些属性的警告。
3、QT_TR_FUNCTIONS这个宏用于启用Qt的国际化(internationalization)功能,使得文本可以被翻译为不同的语言。
4、Q_DECL_HIDDEN_STATIC_METACALL在qobjectdefs.h有定义:
# define Q_DECL_HIDDEN_STATIC_METACALL Q_DECL_HIDDEN
使用 Q_DECL_HIDDEN 可以将类或函数标记为在外部接口中隐藏的,从而使它们对库的用户不可见。这对于避免一些链接时的符号冲突和提高库的封装性很有帮助。这个宏可能会被翻译成 __attribute__((visibility("hidden")))。也就是说qt_static_metacall这个函数没用到,我们忽略。

去除和编译器相关的宏,Q_OBJECT剩下的关键部分:

//qobjectdefs.h
#define Q_OBJECT \
public: \
    static const QMetaObject staticMetaObject; \
    virtual const QMetaObject *metaObject() const; \
    virtual void *qt_metacast(const char *); \
    virtual int qt_metacall(QMetaObject::Call, int, void **); \
private: \
    Q_DECL_HIDDEN_STATIC_METACALL static void qt_static_metacall(QObject *, QMetaObject::Call, int, void **); 


Q_OBJECT宏声明了1个QMetaObject变量和3个QMetaObject相关的虚函数。QMetaObject类非常重要,和元对象系统相关。

二、Q_PROPERTY

//qobjectdefs.h
#define Q_PROPERTY(...) QT_ANNOTATE_CLASS(qt_property, __VA_ARGS__)
#define QT_ANNOTATE_CLASS(type, ...)

在 qobjectdefs.h 中我们并没有看到 Q_PROPERTY 的准确定义。很多Qt的宏和特殊功能是通过moc生成的代码而不是在头文件中显式定义的。C++编译器能够识别 Q_PROPERTY 宏,是因为moc编译时生成了相应的代码。
使用Q_PROPERTY后,相当于把属性纳入了元对象系统,而且给出了一段Q_PROPERTY更细致的声明:
Q_PROPERTY(type name
           (READ getFunction [WRITE setFunction] |
            MEMBER memberName [(READ getFunction | WRITE setFunction)])
           [RESET resetFunction]
           [NOTIFY notifySignal]
           [REVISION int | REVISION(int[, int])]
           [DESIGNABLE bool]
           [SCRIPTABLE bool]
           [STORED bool]
           [USER bool]
           [BINDABLE bindableProperty]
           [CONSTANT]
           [FINAL]
           [REQUIRED])

三、Q_DECLARE_PRIVATE

//qglobal.h
#define Q_DECLARE_PRIVATE(Class) \
    inline Class##Private* d_func() \
    { Q_CAST_IGNORE_ALIGN(return reinterpret_cast<Class##Private *>(qGetPtrHelper(d_ptr));) } \
    inline const Class##Private* d_func() const \
    { Q_CAST_IGNORE_ALIGN(return reinterpret_cast<const Class##Private *>(qGetPtrHelper(d_ptr));) } \
    friend class Class##Private;

加入参数并翻译过后:
inline QObjectPrivate* d_func()
{ Q_CAST_IGNORE_ALIGN(return reinterpret_cast<QObjectPrivate *>(qGetPtrHelper(d_ptr));) }
inline const QObjectPrivate* d_func() const
{ Q_CAST_IGNORE_ALIGN(return reinterpret_cast<const QObjectPrivate *>(qGetPtrHelper(d_ptr));) }
friend class QObjectPrivate;

qGetPtrHelper()方法的定义:
//qglobal.h
template <typename T> static inline T *qGetPtrHelper(T *ptr) { return ptr; }
template <typename Wrapper> static inline typename Wrapper::pointer qGetPtrHelper(const Wrapper &p) { return p.data(); }

qGetPtrHelper是一个模板函数,其目的是为了获取指针或类似指针的数据。
Q_CAST_IGNORE_ALIGN用于禁用GCC编译器的 -Wcast-align 警告。

Q_DECLARE_PRIVATE宏定义了2个函数和1个友元类。2个d_func只是签名不同,传入参数d_ptr,都返回一个QObjectPrivate*类型的指针,而且友元类的名称也是QObjectPrivate。

四、QObjectData和QObjectPrivate

关于变量QScopedPointer<QObjectData> d_ptr:

QScopedPointer类是用于存储指向动态分配对象的指针,并在其销毁时删除它,确保指向的对象在当前作用域消失时将被删除。
所以QScopedPointer<QObjectData>是一个QObjectData的指针。


QObjectData定义:
//qobject.h
class Q_CORE_EXPORT QObjectData {
    //防止对象拷贝
    Q_DISABLE_COPY(QObjectData)
public:
    QObjectData() = default;
    virtual ~QObjectData() = 0;
    QObject *q_ptr;
    QObject *parent;
    QObjectList children;
    uint isWidget : 1;
    uint blockSig : 1;
    uint wasDeleted : 1;
    uint isDeletingChildren : 1;
    uint sendChildEvents : 1;
    uint receiveChildEvents : 1;
    uint isWindow : 1; //for QWindow
    uint deleteLaterCalled : 1;
    uint unused : 24;
    int postedEvents;
    QDynamicMetaObjectData *metaObject;
    QMetaObject *dynamicMetaObject() const;
#ifdef QT_DEBUG
    enum { CheckForParentChildLoopsWarnDepth = 4096 };
#endif
};

上面说到d_func函数传入参数d_ptr,返回的QObjectPrivate*类型的指针,而d_ptr是QObjectData,那也就是说QObjectPrivate是QObjectData的子类。我们且看QObjectPrivate的定义:
//qobject_p.h
class Q_CORE_EXPORT QObjectPrivate : public QObjectData
{
    Q_DECLARE_PUBLIC(QObject)
public:
    struct ExtraData{
        //...
    };
    //和信号&槽相关
    struct ConnectionOrSignalVector{
        //...
    };
    //和信号&槽相关
    struct Connection : public ConnectionOrSignalVector{
        //...
    };
    //和信号&槽相关
    struct Sender{
        //...
    };
    //和信号&槽相关
    struct ConnectionData{
        //...
    };
    QObjectPrivate(int version = QObjectPrivateVersion);
    virtual ~QObjectPrivate();
public:
    ExtraData *extraData;
    QAtomicPointer<QThreadData> threadData;
    using ConnectionDataPointer = QExplicitlySharedDataPointer<ConnectionData>;
    QAtomicPointer<ConnectionData> connections;
    union {
        QObject *currentChildBeingDeleted;
        QAbstractDeclarativeData *declarativeData;
    };
    QAtomicPointer<QtSharedPointer::ExternalRefCountData> sharedRefcount;  
}


Q_DECLARE_PUBLIC(QObject)定义:
//qglobal.h
#define Q_DECLARE_PUBLIC(Class)                                    \
    inline Class* q_func() { return static_cast<Class *>(q_ptr); } \
    inline const Class* q_func() const { return static_cast<const Class *>(q_ptr); } \
    friend class Class;

翻译过后:
inline QObject* q_func() { return static_cast<QObject *>(q_ptr); } 
inline const QObject* q_func() const { return static_cast<const QObject *>(q_ptr); } \
friend class QObject;
这个宏实际上定义了2个签名不一样的函数q_func(),返回q_ptr指针,声明了QObject是友元类。

QObjectPrivate的构造器定义如下:
//qobject.cpp
QObjectPrivate::QObjectPrivate(int version)
    : threadData(nullptr), currentChildBeingDeleted(nullptr)
{
    checkForIncompatibleLibraryVersion(version);
    // QObjectData initialization
    q_ptr = nullptr;
    parent = nullptr;                           // no parent yet. It is set by setParent()
    isWidget = false;                           // assume not a widget object
    blockSig = false;                           // not blocking signals
    wasDeleted = false;                         // double-delete catcher
    isDeletingChildren = false;                 // set by deleteChildren()
    sendChildEvents = true;                     // if we should send ChildAdded and ChildRemoved events to parent
    receiveChildEvents = true;
    postedEvents = 0;
    extraData = nullptr;
    metaObject = nullptr;
    isWindow = false;
    deleteLaterCalled = false;
}
基本上是对继承下来的变量和自身变量进行初始化。

五、QObject()

当实例化一个继承自QObject的对象时,首先会调用QObject的构造器,构造器开始构造对象模型的世界,我们且看QObject构造函数QObject()的定义:
//qobject.cpp
QObject::QObject(QObject *parent)
    : QObject(*new QObjectPrivate, parent)
{
}

//qobject.cpp
QObject::QObject(QObjectPrivate &dd, QObject *parent)
    : d_ptr(&dd)
{
    Q_ASSERT_X(this != parent, Q_FUNC_INFO, "Cannot parent a QObject to itself");
    Q_D(QObject);
    d_ptr->q_ptr = this;
    auto threadData = (parent && !parent->thread()) ? parent->d_func()->threadData.loadRelaxed() : QThreadData::current();
    threadData->ref();
    d->threadData.storeRelaxed(
threadData);
    if (parent) {
        QT_TRY {
            if (!check_parent_thread(parent, parent ? parent->d_func()->threadData.loadRelaxed() : nullptr, 
threadData))
                parent = nullptr;
            if (d->isWidget) {
                if (parent) {
                    d->parent = parent;
                    d->parent->d_func()->children.append(
this);
                }
                // no events sent here, this is done at the end of the QWidget constructor
            } else {
                setParent(parent);
            }
        } QT_CATCH(...) {
            threadData->deref();
            QT_RETHROW;
        }
    }
#if QT_VERSION < 0x60000
    qt_addObject(this);
#endif
    if (Q_UNLIKELY(qtHookData[QHooks::AddQObject]))
        reinterpret_cast<QHooks::AddQObjectCallback>(qtHookData[QHooks::AddQObject])(this);
    Q_TRACE(QObject_ctor, this);
}

public的构造函数实际上是调用了protected的构造函数。
默认新建了一个QObjectPrivate并作为构造函数参数传入,赋值给了d_ptr。变量QScopedPointer<QObjectData> d_ptr在构造函数里实际被赋值为其新建的子实例QObjectPrivate。

Q_D(QObject)定义:
//qglobal.h
#define Q_D(Class) Class##Private * const d = d_func()
调用d_func()得到QObjectPrivate* 并赋值给d,此时d和d_ptr都指向前面实例化的QObjectPrivate。

d_ptr->q_ptr = this;
将QObjectPrivate->q_ptr设置为自身。


//qobject.cpp
auto threadData = (parent && !parent->thread()) ? parent->d_func()->threadData.loadRelaxed() : QThreadData::current();
threadData->ref();
d->threadData.storeRelaxed(
threadData);
检查 parent 是否非空且它所属的线程是否为空,如果都不空的话,获取parent的线程数据;否则获取当前的线程数据。将线程数据存储到对象内部的数据结构中。

//qobject.cpp
if (!check_parent_thread(parent, parent ? parent->d_func()->threadData.loadRelaxed() : nullptr, threadData))
    parent = nullptr;
检查parent和当前对象是否在相同的线程中,如果不在相同线程中,将 parent 设置为 nullptr。

//qobject.cpp
if (d->isWidget) {
    if (parent) {
        d->parent = parent;
        d->parent->d_func()->children.append(this);
    }
}else{
    //...
}
如果对象是一个QWidget,parent不空,则建立起对象和parent的联系,对象的父对象就是parent,parent的children添加该对象。

//qobject.cpp
if (d->isWidget) {
    //...
} else {
    setParent(parent);
}
如果对象不是QWidget,通过setParent(parent)设置父对象。

setParent()的定义:
//qobject.cpp
void QObject::setParent(QObject *parent)
{
    Q_D(QObject);
    Q_ASSERT(!d->isWidget);
    d->setParent_helper(parent);
}
继续调用d->setParent_helper(parent)。

setParent_helper()的定义:
void QObjectPrivate::setParent_helper(QObject *o)
{
    Q_Q(QObject);
    Q_ASSERT_X(q != o, Q_FUNC_INFO, "Cannot parent a QObject to itself");
#ifdef QT_DEBUG
    const auto checkForParentChildLoops = qScopeGuard(
[&](){
        int depth = 0;
        auto p = parent;
        while (p) {
            if (++depth == CheckForParentChildLoopsWarnDepth) {
                qWarning(
"QObject %p (class: '%s', object name: '%s') may have a loop in its parent-child chain; "
                         "this is undefined behavior",
                         q, q->metaObject()->className(), qPrintable(q->objectName()));
            }
            p = p->parent();
        }
    });
#endif
    if (o == parent)
        return;
    if (parent) {
        QObjectPrivate *parentD = parent->d_func();
        if (parentD->isDeletingChildren && wasDeleted
            && parentD->currentChildBeingDeleted == q) {
            // don't do anything since QObjectPrivate::deleteChildren() already
            // cleared our entry in parentD->children.
        } else {
            const int index = parentD->children.indexOf(q);
            if (index < 0) {
                // we're probably recursing into setParent() from a ChildRemoved event, don't do anything
            } else if (parentD->isDeletingChildren) {
                parentD->children[index] = 0;
            } else {
                parentD->children.removeAt(index);
                if (sendChildEvents && parentD->receiveChildEvents) {
                    QChildEvent e(QEvent::ChildRemoved, q);
                    QCoreApplication::sendEvent(parent, &e);
                }
            }
        }
    }
    parent = o;
    if (parent) {
        // object hierarchies are constrained to a single thread
        if (threadData != parent->d_func()->threadData) {
            qWarning(
"QObject::setParent: Cannot set parent, new parent is in a different thread");
            parent = nullptr;
            return;
        }
        parent->d_func()->children.append(q);
        if(sendChildEvents && parent->d_func()->receiveChildEvents) {
            if (!isWidget) {
                QChildEvent e(QEvent::ChildAdded, q);
                QCoreApplication::sendEvent(parent, &e);
            }
        }
    }
    if (!wasDeleted && !isDeletingChildren && declarativeData && QAbstractDeclarativeData::parentChanged)
        QAbstractDeclarativeData::parentChanged(declarativeData, q, o);
}

Q_Q(QObject)的定义:
//qglobal.h
#define Q_Q(Class) Class * const q = q_func()
通过q_func()获取QObjectPrivate的q_ptr,在上面我们知道q_ptr指向了QObject,所以q和q_ptr都指向QObject。


#ifdef QT_DEBUG
    const auto checkForParentChildLoops = qScopeGuard(
[&](){
        int depth = 0;
        auto p = parent;
        while (p) {
            if (++depth == CheckForParentChildLoopsWarnDepth) {
                qWarning(
"QObject %p (class: '%s', object name: '%s') may have a loop in its parent-child chain; "
                         "this is undefined behavior",
                         q, q->metaObject()->className(), qPrintable(q->objectName()));
            }
            p = p->parent();
        }
    });
#endif
这一段通过warning可以推断出是在检测父子关系链中是否存在循环,如果循环链深度超过阈值,则警告。


if (o == parent)
    return;
如果已经设置过parent且没变,直接返回。


//如果已经有parent
if (parent) {
    //获取父对象的QObjectPrivate
    QObjectPrivate *parentD = parent->d_func();
    //检查父对象是否正在删除其子对象,当前对象是否已经被删除,前对象是否是父对象正在删除的子对象。
    //如果这些条件都成立,就跳过后续的处理,因为在删除子对象的过程中已经做了清理工作。
    if (parentD->isDeletingChildren && wasDeleted
        && parentD->currentChildBeingDeleted == q) {
        // don't do anything since QObjectPrivate::deleteChildren() already
        // cleared our entry in parentD->children.
    } else {
        //获取当前对象在其父对象的子对象列表中的索引
        const int index = parentD->children.indexOf(q);
        //如果索引为负数,可能表示正在从 ChildRemoved 事件中递归到 setParent(),这时不执行任何操作。
        if (index < 0) {
            // we're probably recursing into setParent() from a ChildRemoved event, don't do anything
        } else if (parentD->isDeletingChildren) {//如果父对象正在删除其子对象,将相应的子对象指针更新为0。
            parentD->children[index] = 0;
        } else {//否则,从父对象的子对象列表中移除当前对象
            parentD->children.removeAt(
                index);
            //发送一个 ChildRemoved 事件给父对象。
            if (sendChildEvents && parentD->receiveChildEvents) {
                QChildEvent e(QEvent::ChildRemoved, q);
                QCoreApplication::sendEvent(parent, 
                                            &e);
            }
        }
    }
}
上面这一段是在已有perent的情况下,断开parent和当前对象的联系,并确保在移除子对象时做了适当的清理和事件通知。实际上是为下面刷新parent做准备。

parent = o;//更新parent

//parent赋值后
if (parent) {
    // object hierarchies are constrained to a single thread
    // 对象层次结构受限于单个线程
    // 比较当前对象的线程数据和父对象的线程数据,如果它们不一致
    if (threadData != parent->d_func()->threadData) {
        qWarning(
            "QObject::setParent: Cannot set parent, new parent is in a different thread");
        //父对象置空
        parent = nullptr;
        //直接返回
        return;
    }
    //将当前对象添加到父对象的子对象列表中。
    parent->d_func()->children.append(
        q);
    if(sendChildEvents && parent->d_func()->receiveChildEvents) {
        if (!isWidget) {
            //将这个事件发送给父对象
            QChildEvent e(QEvent::ChildAdded, q);
            QCoreApplication::sendEvent(parent, 
                                        &e);
        }
    }
}
上面这一段是在设置对象的父对象后进行一些检查,确保父对象线程数据和该对象的一致,否则将parent设为nullptr,随后发送相应的ChildAdded事件给parent。
setParent_helper函数主要做了两件事:
1)确保旧parent安全撤离。
2)确保新parent正确设置。

简单概括一下构造函数QObject()的内容:
1)新建QObjectPrivate并赋值给d_ptr。
2)赋值d_ptr->q_ptr为对象本身。
3)初始化threadData。
4)检查当前对象和parent是否在同一线程.
5)为当前对象和parent设置关联.

六、Q_DISABLE_COPY()

//qglobal.h
#define Q_DISABLE_COPY(Class) \
    Class(const Class &) = delete;\
    Class &operator=(const Class &) = delete;

这里删除了拷贝构造函数和拷贝赋值操作符,确保QObject不能被拷贝构造或赋值。

觉得有帮助的话,打赏一下呗。。

           

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1902731.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

数据埋点从入门到了解

想讲讲为什么有埋点&#xff0c;举个例子 目录 什么是埋点&#xff1f;用途小红书上 埋点的主要类型代码示例1. 代码埋点前端埋点后端埋点 (Node.js 示例) 2. 全埋点示例3. 可视化埋点示例 解释常见问题埋点管理系统结论 王五是一名数据分析师&#xff0c;负责分析公司产品的用…

非NI GPIB卡与LabVIEW兼容性分析

在许多测试和测量应用中&#xff0c;通用接口总线&#xff08;GPIB&#xff09;是一种广泛使用的标准。尽管国家仪器公司&#xff08;NI&#xff09;提供的GPIB硬件和LabVIEW软件的组合被广泛接受和使用&#xff0c;但成本可能较高。因此&#xff0c;一些用户会考虑使用其他厂商…

什么是T0策略?有没有可以持仓自动做T的策略软件?

​​行情低迷&#xff0c;持仓被套&#xff0c;不想被动等待&#xff1f;长期持股&#xff0c;想要增厚持仓收益&#xff1f;有没有可以自动做T的工具或者策略&#xff1f;日内T0交易&#xff0c;做到降低持仓成本&#xff0c;优化收益预期。 什么是T0策略&#xff1f; 可以提…

Android最近任务显示的图片

Android最近任务显示的图片 1、TaskSnapshot截图1.1 snapshotTask1.2 drawAppThemeSnapshot 2、导航栏显示问题3、Recentan按键进入最近任务 1、TaskSnapshot截图 frameworks/base/services/core/java/com/android/server/wm/TaskSnapshotController.java frameworks/base/cor…

c++ primer plus 第15章友,异常和其他: 15.2.1 嵌套类和访问权限系

c primer plus 第15章友&#xff0c;异常和其他&#xff1a; 15.2.1 嵌套类和访问权限系 提示&#xff1a;这里可以添加系列文章的所有文章的目录&#xff0c;目录需要自己手动添加 例如&#xff1a;c primer plus 第15章友&#xff0c;异常和其他&#xff1a; 15.2.1 嵌套类和…

详解Amivest 流动性比率

详解Amivest 流动性比率 Claude-3.5-Sonnet Poe Amivest流动性比率是一个衡量证券市场流动性的重要指标。这个比率主要用于评估在不对价格造成重大影响的情况下,市场能够吸收多少交易量。以下是对Amivest流动性比率的详细解释: 定义: Amivest流动性比率是交易额与绝对收益率的…

柯桥职场英语学习商务英语口语生活英语培训生活口语学习

辣妹用英语怎么说&#xff1f; 辣妹在英语中通常被翻译为“hot girl”或“spicy girl”&#xff0c;但更常见和直接的是“hot chick”或简单地使用“hot”来形容。 举个例子: Shes a real hot girl with her trendy outfit and confident attitude. 她真是个辣妹&#xff0…

Linux:进程终止和进程替换

Linux&#xff1a;Linux&#xff1a;进程终止和进程替换 一、进程终止1.1 进程退出场景和创建退出方式 1.2 exit 和 _exit区别二、进程程序替换2.1 进程替换函数2.2 函数解释及命名解释函数解释命名解释 2.3 单进程程序替换&#xff08;无子进程&#xff09;2.3.1 带l函数进程替…

Ubuntu配置GitHub(第一次clone/push)

文章目录 1. 安装Git&检查连接2. 注册GitHub3. 生成&GitHub添加SSH3.1. 检查&删除已有id_rsa3.2. 生成SSH3.3. GitHub添加id_rsa.pub SSH3.4. 检查SSH 4. 继续开发可以参考参考 1. 安装Git&检查连接 安装 sudo apt-get install git检查SSH连接 ssh -T gitgi…

C++——stack和queue类用法指南

一、stack的介绍和使用 1.1 stack的介绍 1、stack是一种容器适配器&#xff0c;专门用在具有后进先出操作的上下文环境中&#xff0c;其删除只能从容器的一端进行插入与提取操作 2、stack是作为容器适配器被实现的&#xff0c;容器适配器即是对特定类封装作为其底层的容器&am…

clickhouse高可用可拓展部署

clickhouse高可用&可拓展部署 1.部署架构 1.1高可用架构 1.2硬件资源 部署服务 节点名称 节点ip 核数 内存 磁盘 zookeeper zk-01 / 4c 8G 100G zk-02 / 4c 8G 100G zk-03 / 4c 8G 100G clikehouse ck-01 / 32c 128G 2T ck-02 / 32c 128G 2T ck-03 / 32c 128G 2T ck-04 /…

设计模式之模版方法

模版方法介绍 模版方法&#xff08;Template Method&#xff09;模式是一种行为型设计模式&#xff0c;它定义了一个操作&#xff08;模板方法&#xff09;的基本组合与控制流程&#xff0c;将一些步骤&#xff08;抽象方法&#xff09;推迟到子类中&#xff0c;使得子类可以在…

LeetCode热题100刷题8:54. 螺旋矩阵、73. 矩阵置零、48. 旋转图像

54. 螺旋矩阵 class Solution { public:vector<int> spiralOrder(vector<vector<int>>& matrix) {vector<int> vec;if(matrix.empty())return vec;int left0;int right matrix[0].size()-1;int up0;int down matrix.size()-1;while(true) {for(i…

【TB作品】脉搏测量,ATMEGA8单片机,Proteus仿真,ATmega8控制脉搏测量与显示系统

硬件组成&#xff1a; LCD1602脉搏测量电路&#xff08;带灯&#xff09;蜂鸣器报警按键设置AT24C02 功能&#xff1a; &#xff08;1&#xff09;LCD1602主页显示脉搏、报警上限、报警下限&#xff1b; &#xff08;2&#xff09;五个按键&#xff1a;按键1&#xff1a;切换设…

axios的使用,处理请求和响应,axios拦截器

1、axios官网 https://www.axios-http.cn/docs/interceptors 2、安装 npm install axios 3、在onMouunted钩子函数中使用axios来发送请求&#xff0c;接受响应 4.出现的问题&#xff1a; &#xff08;1&#xff09; 但是如果发送请求请求时间过长&#xff0c;回出现请求待处…

RK3568 GPU介绍及使用

一、RK3568简介 RK3568四核64位Cortex-A55 处理器&#xff0c;采用全新ARM v8.2-A架构&#xff0c;主频最高可达2.0GHz&#xff0c;效能有大幅提升&#xff1b;采用22nm先进工艺&#xff0c;具有低功耗高性能的特点RK3568集成了双核心架构 GPU&#xff0c;高性能VPU以及高效能…

YOLOv8_obb数据集可视化[旋转目标检测实践篇]

先贴代码,周末再补充解析。 这个篇章主要是对标注好的标签进行可视化,虽然比较简单,但是可以从可视化代码中学习到YOLOv8是如何对标签进行解析的。 import cv2 import numpy as np import os import randomdef read_obb_labels(label_file_path):with open(label_file_path,…

Linux内存管理--系列文章柒——硬件架构

一、引子 之前文章讲解的是系统的虚拟内存&#xff0c;本章讲述这些硬件的架构和系统怎样统一管理这些硬件的。 二、物理内存模型 物理内存模型描述了计算机系统中的物理内存如何由操作系统组织和管理。它定义了物理内存如何划分为单元&#xff0c;如何寻址这些单元以及如何…

yolov8实战——yolov8TensorRT部署(python推理)(保姆教学)

yolov8实战——yolov8TensorRT部署&#xff08;python推理&#xff09;&#xff08;保姆教学&#xff09; 一 、准备好代码和环境安装TensorRt下载代码和安装环境 部署和推理构建ONNX构建engine无torch推理torch推理 最近用到yolov8&#xff0c;但是寻找了一圈才找到了yolov8最…

Java 自定义集合常量

文章目录 Java 自定义集合常量一、普通方法自定义集合常量信息1、定义 Map 集合信息&#xff08;1&#xff09;方法一&#xff1a;使用静态代码块&#xff08;2&#xff09;方法二&#xff1a;简单定义 Map 常量 2、定义 List 集合信息3、定义 Set 集合信息 二、通过 Collectio…