基于python的数据分解-趋势-季节性-波动变化

news2024/11/29 12:31:48

系列文章目录


前言

时间序列数据的分解,一般分为趋势项,季节变化项和随机波动项。可以基于加法或者乘法模型。季节变化呈现出周期变化,因此也叫季节效应(周期)。

一、数据分解步骤

(1)估计时间序列的长期趋势,一种是通过数据平滑方式进行估计;一种是通过模拟回归方程进行估计;
(2)去掉时间序列数据的长期趋势。 加法模型则减去,乘法模型即除去;
(3)去掉长期趋势的时间序列数据,估计时间序列的季节变化;
(4)剩下的即为随机波动项;

二、使用步骤

1.数据分解方法

import os
#移动平均法
os.chdir("D:/Pythonmatlab学习资料/") 
#改变工作目录
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.seasonal import seasonal_decompose
import numpy as np

from statsmodels.tsa.seasonal import seasonal_decompose

traveller_df = pd.read_csv("NZTravellersDestination.csv", usecols=['Date','China'], parse_dates=['Date'], index_col='Date')

deco_muti = seasonal_decompose(traveller_df, model='mutiplicative', extrapolate_trend='freq')

new,(ax1,ax2,ax3,ax4) = plt.subplots(4, 1, sharex=True, figsize=(12,8), dpi=150)
ax1.plot(deco_muti.observed, color='r')
ax1.set_ylabel(ylabel="Observed", fontsize=15)
ax2.plot(deco_muti.trend, color='b')
ax2.set_ylabel(ylabel="Trend", fontsize=15)
ax3.plot(deco_muti.seasonal, color='g')
ax3.set_ylabel(ylabel="Seasonal", fontsize=15)
ax4.plot(deco_muti.resid, color='b')
ax4.set_ylabel(ylabel="Resid", fontsize=15)
plt.xticks(fontsize=15); plt.yticks(fontsize=15)
plt.tight_layout(); plt.savefig(fname='fig/4_1.png')

deco_value = pd.concat([deco_muti.trend, deco_muti.seasonal, deco_muti.resid, deco_muti.observed], axis=1)
deco_value.columns = ['trend', 'season', 'resid', 'actual_values']
deco_value.head()
##%

2.分解项计算方法


import statsmodels.formula.api as smf
#表示线性拟合计算趋势
df = np.loadtxt("elec_prod.txt")
t = np.arange(1,397)

df_t = np.vstack((df,t)).swapaxes(0,1).astype(int)
model_data = pd.DataFrame(df_t,columns=['df','t'])

results_f = smf.ols('df~t',data=model_data).fit()
print(results_f.summary().tables[1])
print('std = ',np.std(results_f.resid))

fig = plt.figure(figsize=(12,4), dpi=150)
ax = fig.add_subplot(111)
ax.plot(model_data, linestyle="-", color='red')
ax.plot(t,1.423e+05 + 499.2576*t, color='blue')
ax.set_ylim((130000, 410000))
ax.set_ylabel(ylabel="Electricity", fontsize=17)
ax.set_xlabel(xlabel="Time", fontsize=17)
plt.xticks(fontsize=15); plt.yticks(fontsize=15)
fig.tight_layout(); plt.savefig(fname='fig/4_2.png')

##%表示曲线拟合计算趋势
df = pd.read_excel('ningxiaGDP.xlsx').rename(columns={'t':'t1'})
df = pd.DataFrame(df['t1'].values**2,columns=['t2']).join(df)

results_f = smf.ols('gdp~ 0 + t1+ t2', data=df).fit()
print(results_f.summary().tables[1])
print('std = ', np.std(results_f.resid))

from scipy.optimize import curve_fit

df = pd.read_excel('ningxiaGDP.xlsx')
t = df['t'].values
gdp = df['gdp'].values

def func(x, b,c):
   return b*x + c*x**2

popt, pcov = curve_fit(func,t,gdp,p0=(1.0,1.0))
print(popt)

b = popt[0]
c = popt[1]
residuals = gdp - func(t, b, c)
print(np.std(residuals))

t = np.arange(1996, 2016)

fig = plt.figure(figsize=(12,4),dpi=150)
ax = fig.add_subplot(111)
ax.scatter(y=gdp, x=t, color='blue')
ax.plot(t, results_f.predict())
ax.xaxis.set_major_locator(ticker.MultipleLocator(3))
ax.set_ylabel(ylabel="宁夏地区生产总值",fontsize=17)
ax.set_xlabel(xlabel="时间", fontsize=17)
plt.xticks(fontsize=15); plt.yticks(fontsize=15)
fig.tight_layout(); plt.savefig(fname='fig/4_3.png')

##%表示5期移动平均拟合,移动平均法计算趋势
from statsmodels.tsa.seasonal import seasonal_decompose
nile_ar = np.loadtxt("Nile.txt"); Date = np.arange(1871, 1971)
nile_df = pd.DataFrame({"Date":Date, "Nile":nile_ar})
nile_df.index = nile_df["Date"]

nile_df['5-period Moving Avg'] = nile_df['Nile'].rolling(5).mean()

fig = plt.figure(figsize=(12,4), dpi=150)
ax = fig.add_subplot(111)
nile_df['Nile'].plot(ax=ax, color='b', marker="o", linestyle='--')
nile_df['5-period Moving Avg'].plot(ax=ax, color='r')
ax.legend(loc=1,labels=['Index','Moving average'], fontsize=13)
ax.set_ylabel(ylabel="Index", fontsize=17)
ax.set_xlabel(xlabel="Time", fontsize=17)
plt.xticks(fontsize=15); plt.yticks(fontsize=15)
fig.tight_layout(); plt.savefig(fname='fig/4_4.png')

#%%二次移动平均法计算趋势
gdp_df = pd.read_csv('JDGDP.csv')

gdp_df['Moving_Avg_1'] = gdp_df['JDGDP'].rolling(4).mean()
gdp_df['Moving_Avg_2'] = gdp_df['Moving_Avg_1'].rolling(4).mean()

gdp_df['at'] = 2*gdp_df['Moving_Avg_1'] - gdp_df['Moving_Avg_2']

fig = plt.figure(figsize=(12,4),dpi=150)
ax = fig.add_subplot(111)
gdp_df['JDGDP'].plot(ax=ax, color='b',marker="o",linestyle='--')
gdp_df['at'].plot(ax=ax, color='r')
ax.xaxis.set_major_locator(ticker.MultipleLocator(3))
ax.legend(loc=2,labels=['季度GDP','两次移动平均'], fontsize=13)
ax.set_ylabel(ylabel="中国季度国内生产总值", fontsize=17)
ax.set_xlabel(xlabel="时间", fontsize=17)
plt.xticks(fontsize=15); plt.yticks(fontsize=15)
fig.tight_layout(); plt.savefig(fname='fig/4_5.png')

##%指数平滑法,考虑近期变化对现在影响较大,而远期的变化对现在影响要小一些
from statsmodels.tsa.api import SimpleExpSmoothing
df = np.loadtxt("retail_price_index.txt")
index = pd.date_range(start="1990", end="2021", freq="A")
retail_df = pd.Series(df, index)

fit1 = SimpleExpSmoothing(retail_df, initialization_method="heuristic").fit(smoothing_level=0.2, optimized=False)
fcast1 = fit1.forecast(3).rename(r"α=0.2")

fit2 = SimpleExpSmoothing(retail_df, initialization_method="heuristic").fit(smoothing_level=0.6, optimized=False)
fcast2 = fit2.forecast(3).rename(r"α=0.6")

fit3 = SimpleExpSmoothing(retail_df, initialization_method="estimated").fit()
fcast3 = fit3.forecast(3).rename(r"α=
"% fit3.model.params["smoothing_level"] )
fig = plt.figure(figsize=(12,4), dpi=150)
ax = fig.add_subplot(111)
ax.plot(retail_df, marker="o", color="black")
ax.plot(fit1.fittedvalues, marker="8", color="green",linestyle="-.")
(line1,) = ax.plot(fcast1, marker="8", color="green",linestyle="-.")
ax.plot(fit2.fittedvalues, marker="s", color="red",linestyle=":")
(line2,) = ax.plot(fcast2, marker="s", color="red",linestyle=":")
ax.plot(fit3.fittedvalues, marker="p", color="blue",linestyle="--")
(line3,) = ax.plot(fcast3, marker="p", color="blue",linestyle="--")
plt.legend([line1, line2, line3], [fcast1.name, fcast2.name, fcast3.name], fontsize=15)
ax.set_ylabel(ylabel="商品零售价格指数", fontsize=17)
ax.set_xlabel(xlabel="时间", fontsize=17)
plt.xticks(fontsize=15); plt.yticks(fontsize=15)
fig.tight_layout(); plt.savefig(fname='fig/4_6.png')

##%对于含有季节变动部分的时间序列为Holt-Winters指数平滑法
from statsmodels.tsa.api import ExponentialSmoothing
df = np.loadtxt("QGDP.txt")
index = pd.date_range(start="2000", end="2021", freq="Q")
QGDP_df = pd.Series(df, index)

fit = ExponentialSmoothing(QGDP_df, seasonal_periods=4, trend="add", seasonal="mul",initialization_method="estimated").fit()
simulations = fit.simulate(8, repetitions=1000, error="mul")

fig = plt.figure(figsize=(12,4), dpi=150)
ax = fig.add_subplot(111)
ax.plot(QGDP_df, marker="o", color="black")
ax.plot(fit.fittedvalues, marker="o", color="blue", linestyle=":")
ax.plot(simulations, marker="o", color="blue", linestyle=":")
ax.set_ylabel(ylabel="国内季度生产总值累计值", fontsize=17)
ax.set_xlabel(xlabel="时间",fontsize=17)
plt.xticks(fontsize=15); plt.yticks(fontsize=15)
fig.tight_layout(); plt.savefig(fname='fig/4_8.png')

##%季节效应,季节指数,用简单平均法计算的周期内各时期季节性影响的相对数。
df = np.loadtxt("tempdub.txt")
index = pd.date_range(start="1964", end="1976", freq="M")
tempdub_df = pd.Series(df, index)

fig = plt.figure(figsize=(12,4), dpi=150)
ax = fig.add_subplot(111)
ax.plot(tempdub_df, marker="o", color="blue")
ax.set_ylabel(ylabel="杜比克市月平均气温",fontsize=17)
ax.set_xlabel(xlabel="时间",fontsize=17)
plt.xticks(fontsize=15);plt.yticks(fontsize=15)
fig.tight_layout(); plt.savefig(fname='fig/4_9.png')

t = np.arange(1,13)
SI = np.array([0.36,0.45,0.7,1.00,1.26,1.46,1.55,1.50,1.32,1.10,0.79,0.51])
Season_index = pd.Series(SI, t)

fig = plt.figure(figsize=(12,4), dpi=150)
ax = fig.add_subplot(111)
ax.plot(Season_index, marker="o", color="blue")
ax.set_ylabel(ylabel="季节指数",fontsize=17)
ax.set_xlabel(xlabel="时间",fontsize=17)
plt.xticks(fontsize=15);plt.yticks(fontsize=15)
fig.tight_layout(); plt.savefig(fname='fig/4_10.png')


出图

分解效果在这里插入图片描述在这里插入图片描述
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述参考书籍
基于Python的时间序列分析

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1902538.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

相关向量机RVM算法介绍继承sklearn-SVM-API实现回归预测算例

一、相关向量机RVM与支持向量机SVM对比 1、相关向量机(RVM) ①定义与原理 相关向量机(Relevance Vector Machine, RVM)是一种基于概率模型的机器学习算法,主要用于分类和回归分析。基于稀疏贝叶斯学习框架&#xff…

杰理科技AD142A语音芯片,语音玩具方案—云信通讯

语音玩具产品市场的需求量比较大,从前简单的发光玩具,到各种动作的电子玩具,再到如今的语音录音灯光动作玩具,可见玩具行业也是在不断地演变。 杰理语音芯片AD142A4的优势主要是支持录音、录变音、语音播放,广泛应用于…

kubernetes集群部署:node节点部署和CRI-O运行时安装(三)

关于CRI-O Kubernetes最初使用Docker作为默认的容器运行时。然而,随着Kubernetes的发展和OCI标准的确立,社区开始寻找更专门化的解决方案,以减少复杂性和提高性能。CRI-O的主要目标是提供一个轻量级的容器运行时,它可以直接运行O…

给我的 IM 系统加上监控两件套:【Prometheus + Grafana】

监控是一个系统必不可少的组成部分,实时,准确的监控,将会大大有助于我们排查问题。而当今微服务系统的话有一个监控组合很火那就是 Prometheus Grafana,嘿你别说 这俩兄弟配合的相当完美,Prometheus负责数据采集&…

手写实现一个ORM框架

手写实现一个ORM框架 什么是ORM框架、ORM框架的作用效果演示框架设计代码细节SqlBuilderSqlExecutorStatementHandlerParameterHandlerResultSetHandler逆序生成实体类 大家好,本人最近写了一个ORM框架,想在这里分享给大家,让大家来学习学习。…

10、matlab中字符、数字、矩阵、字符串和元胞合并为字符串并将字符串以不同格式写入读出excel

1、前言 在 MATLAB 中,可以使用不同的数据类型(字符、数字、矩阵、字符串和元胞)合并为字符串,然后将字符串以不同格式写入 Excel 文件。 以下是一个示例代码,展示如何将不同数据类型合并为字符串,并以不…

【设计模式】装饰器模式(定义 | 特点 | Demo入门讲解)

文章目录 定义装饰模式的结构 快速入门 | Demo顶层抽象DataSource数据源接⼝具体实现类引入BASE**64**编码装饰器客户端Client 定义 所谓装饰器模式其实就是在原有的功能上做一个增强!! 换句话说:以前你妈妈揍你的时候用的巴掌,但…

Android 简单快速实现 下弧形刻度尺(滑动事件)

效果图: 直接上代码: package com.my.view;import android.content.Context; import android.graphics.Bitmap; import android.graphics.BitmapFactory; import android.graphics.Canvas; import android.graphics.Color; import android.graphics.Pai…

SQL注入【1】——通用漏洞/SQL注入/mysql跨库/ACCESS偏移

一、知识点: 1、脚本代码与数据库前置知识 2、Access数据库注入-简易&偏移 3、MYSQL数据库注入-简易:权限跨库 二、前置知识: (一)SQL注入漏洞产生原理分析 SQL注入产生条件:根本条件:可控变量、特定函数。 脚本代码在实现…

一气之下,关闭成都400多人的游戏公司

关注卢松松,会经常给你分享一些我的经验和观点。 最近,多益网络宣布关闭成都公司,在未来三年内,关闭成都所有的相关公司。原因竟然是输掉了劳动仲裁,赔偿员工38万多,然后一气之下要退出成都,…

windows下编译ffmpeg 最详细教程

1 Ffmpeg下载地址:FFmpeg 使用命令下载 git clone https://git.ffmpeg.org/ffmpeg.git ffmpeg 下载完成后会发现如下目录: 2 msys2下载地址:MSYS2 解压好后,选择一个非空路径安装,安装好后路径如下: 为…

基于STM32的通用红外遥控器设计: 解码、学习与发射(代码示例)

摘要: 本文将带你使用STM32打造一款功能强大的万能红外遥控器,它可以学习和复制多种红外信号,并通过OLED屏幕和按键实现便捷操作。我们将深入探讨红外通信原理、STM32编程、OLED显示和EEPROM数据存储等关键技术,并提供完整的代码示…

【Qt】day3 自定义控件、框架、定时器、QPainter、QFile

文章目录 自定义控件封装自定义框架定时器第一种方式第二种方式 (推荐) 事件分发器QPainter基本操作高级设置抗锯齿移动坐标原点 画家画资源图片,并实现手动移动 作业QPaintDevice绘图设备QPixmapQimageQPicture QFile文件读写操作QFileInfo文…

FPGA_GTX:简要版

1. GTX介绍 Xilinx FPGA的GT意思是Gigabyte Transceiver。通常称呼为Serdes、高速收发器。GT在xilinx不同系列有着不同的产品,从7系列到UltraScale系列分别有GTP、GTX、GTZ、GTH、GTY和GTM。不同GT整体结构上类似,为了支持越来越高的line rate&#xff…

virtualbox窗口和win10窗口的切换

1、问题: 从windows切换到虚拟机可以用快捷键 ALTTAB,但是从虚拟机到windows使用 ALTTAB 无法成功切换 2、解决方法: 注意:发现设置为ctrlAlt会导致打开终端快捷键(CtrlAltT)失效,建议这里设置…

Lua语言入门

目录 Lua语言1 搭建Lua开发环境1.1 安装Lua解释器WindowsLinux 1.2 IntelliJ安装Lua插件在线安装本地安装 2 Lua语法2.1 数据类型2.2 变量全局变量局部变量命名规范局部变量作用域 2.3 注释单行注释多行注释 2.4 赋值2.5 操作符数学操作符比较操作符逻辑操作符连接操作符取长度…

HACCP体系认证:守护食品安全的黄金标准

在食品生产过程中,食品安全始终是重中之重。为了确保食品的安全性和质量,越来越多的企业开始采用HACCP(危害分析关键控制点)体系认证。这个体系不仅能帮助企业预防食品安全问题,还能显著提升产品质量和市场竞争力。 HA…

深入探索C语言中的结构体:定义、特性与应用

🔥 个人主页:大耳朵土土垚 目录 结构体的介绍结构体定义结构成员的类型结构体变量的定义和初始化结构体成员的访问结构体传参 结构体的介绍 在C语言中,结构体是一种用户自定义的数据类型,它允许开发者将不同类型的变量组合在一起…

适用于Mac和Windows的最佳iPhone恢复软件

本文将指导您选择一款出色的iPhone数据恢复软件来检索您的宝贵数据。 市场上有许多所谓的iPhone恢复程序。各种程序很难选择并选择其中之一。一旦您做出了错误的选择,您的数据就会有风险。 最好的iPhone数据恢复软件应包含以下功能。 1.安全可靠。 2.恢复成功率高…

郭明錤:苹果将为Vision Pro推出红外摄像头款AirPods

在科技界,苹果公司的每一次创新都备受瞩目。近日,著名苹果分析师郭明錤透露了一个令人振奋的消息:苹果计划在2026年推出配备红外摄像头的新款AirPods,这款耳机将特别优化与Apple Vision Pro头显的空间体验。这一消息不仅预示着苹果在音频设备领域的又一次技术飞跃,也进一步…