基于自编码器的时间序列异常检测方法(以传感器数据为例,MATLAB R2021b)

news2025/2/24 7:35:23

尽管近年来研究者对自编码器及其改进算法进行了深入研究,但现阶段仍存在以下问题亟须解决。

1) 无监督学习模式对特征提取能力的限制与有监督学习相比,无监督学习模式摆脱了对样本标签的依赖、避免了人工标注的困难,但也因此失去了样本标签的辅助,标签信息难以有效应用于特征提取中,使自编码器性能与有监督学习存在一定差距。因此,研究半监督或有监督条件下的自编码器,合理运用标签信息提升自编码器特征提取能力,是一个需要重点关注与解决的问题。针对此问题,一方面可以通过在自编码器输入层或输出层中直接添加样本标签,同时重构输入样本及其标签,强迫自编码器在编码与解码过程中考虑到标签损失,使提取的特征更加符合不同样本的类本质。另一方面,可以通过在损失函数上添加暗含标签信息的类内离散度或类间离散度正则化项,在最小化损失函数的过程中,减少抽象特征的类内距离,增加类间距离,增强抽象特征的类可区分性,提升自编码器的特征提取能力,使抽象特征更适用于分类任务。

2) 硬件要求高,训练时间长

复杂的网络结构依赖大量的训练样本,以自编码器为代表的深度学习模型具有较高的时空复杂度,需要消耗巨大的计算与存储资源,这对硬件设备提出了更高要求,往往导致训练时间过长。针对此问题,一方面可以将模型压缩技术应用于自编码器中,采用剪枝算法剔除冗余节点或通道,实现网络结构的精简,或对权值进行稀疏化,抑制部分神经节点,完成对网络参数的压缩。另一方面可以研究轻量化自编码器算法,借鉴ELM-AE算法,对自编码器的训练方式进行改进,减少参数迭代微调次数,提升算法训练效率。此外,还可以通过研究分布式优化算法来降低模型的计算复杂度,或研究并行计算方法以充分利用现有计算资源。这些方法有助于降低自编码器的结构复杂度,降低软硬件要求,减少训练时间。

3) 随机初始化引入额外噪声

目前,绝大多数自编码器及其改进算法对网络参数均采用随机初始化,这不可避免地引入了额外噪声,影响算法的收敛速度与泛化性能。因此,如何有效地进行网络初始化是一个值得深入研究的问题。针对此问题,一方面可以通过在损失函数中添加 L1 或 L2 范数正则化项,以降低随机初始化导致的噪声影响,另一方面可以采用Glorot 初始化方法、He初始化方法等其他改进初始化方法,在缓解噪声影响的同时,使自编码器的训练过程更加稳定,避免出现梯度消失或爆炸现象。

4) 难以适应小样本条件,易产生过拟合

自编码器及其深度结构由于模型结构复杂,需要大量样本进行训练,在小样本条件下训练自编码器极易产生过拟合,进而降低模型泛化性能。因此小样本条件已成为制约自编码器应用的关键因素。

鉴于此,采用普通的自编码器对传感器时间序列数据进行异常检测,运行环境为MATLAB R2021B。

% Loop through data points (the anomaly occurs somewhere around 1350)
for i = 1000:1500
   
    % Take a frame of data
    data = faultydata(i:i+99);
    
    % Predict with autoencoder
    yhat = predict(autoenc,data);
    
    % Calculate error
    losses = [losses;sqrt(sum((yhat - data).^2))];
    
    % After first frame, only add one data point to the plot
    if j > 1
        yhat = yhat(end);
        data = data(end);
    end
    
    % Update data to be plotted
    dataall = [dataall;[data yhat]];
    
    % Plot
    p1(1).XData = 1:size(dataall,1);p1(2).LineWidth = 1.5;
    p1(2).XData = 1:size(dataall,1);
    p1(1).YData = dataall(:,1);p2.LineWidth = 1.5;
    p1(2).YData = dataall(:,2);
   
    p2.XData = 1:length(losses);
    p2.YData = losses;
    pause(0.005)
    j = j+1;
end

图片

图片

图片

图片

  • 擅长领域:现代信号处理,机器学习,深度学习,数字孪生,时间序列分析,设备缺陷检测、设备异常检测、设备智能故障诊断与健康管理PHM等。
    完整数据和代码通过知乎学术咨询获得:https://www.zhihu.com/consult/people/792359672131756032?isMe=1

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1902270.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

LLM - 循环神经网络(RNN)

1. RNN的关键点:即在处理序列数据时会有顺序的记忆。比如,RNN在处理一个字符串时,在对字母表顺序有记忆的前提下,处理这个字符串会更容易。就像人一样,读取下面第一个字符串会更容易,因为人对字母出现的顺序…

一站式解决方案:用ChatGPT和AutoGPT组建你的个人写作团队

ChatGPT 在 AI 内容创作领域带来了巨大的飞跃,然而它在撰写完整文章时偶尔会陷入废话和奇怪主题。作为专业作家、AI专家及OpenAI Beta测试人员,我一直探索AI写作。虽然ChatGPT表现出色,但有时难以达到创造高质量文章的标准。 最近&#xff0…

EtherCAT转Profinet网关配置说明第二讲:上位机软件配置

EtherCAT协议转Profinet协议网关模块(XD-ECPNS20),不仅可以实现数据之间的通信,还可以实现不同系统之间的数据共享。EtherCAT协议转Profinet协议网关模块(XD-ECPNS20)具有高速传输的特点,因此通…

githup开了代理push不上去

你们好,我是金金金。 场景 git push出错 解决 cmd查看 git config --global http.proxy git config --global https.proxy 如果什么都没有,代表没设置全局代理,此时如果你开了代理,则执行如下,设置代理 git con…

Github:git提交代码到github

创建 GitHub 仓库 a. 登录到您的 GitHub 账户。 b. 点击右上角的 "" 图标,选择 "New repository"。 c. 填写仓库名称(例如 "Mitemer")。 d. 添加项目描述(可选)。 e. 选择仓库为 &…

微信小程序的轻松音乐-计算机毕业设计源码48092

目 录 摘要 1 绪论 1.1研究背景与意义 1.2研究现状 1.3论文结构与章节安排 2 基于微信小程序的轻松音乐系统分析 2.1 可行性分析 2.1.1 技术可行性分析 2.1.2 经济可行性分析 2.1.3 法律可行性分析 2.2 系统功能分析 2.2.1 功能性分析 2.3 系统用例分析 2.4 系统…

排序——数据结构与算法 总结8

目录 8.1 排序相关概念 8.2 插入排序 8.2.1 直接插入排序: 8.2.2 折半插入排序: 8.2.3 希尔排序: 8.3 交换排序 8.3.1 冒泡排序: 8.3.2 快速排序: 8.4 选择排序 8.4.1 简单选择排序 8.4.2 堆排序 8.5 归并…

C++--partition库函数

介绍 在C中,partition函数通常是指STL(Standard Template Library)中的std::partition算法,它用于对一个序列进行分区操作。具体来说,std::partition接受一个范围和一个谓词(predicate)作为参数…

策略为王股票软件源代码-----如何修改为自己软件73------------主界面右下角,大盘指数,时间显示 ,

IDS_MAINFRAME_SHINDEXTIP "沪:%2.f %+.2f %.2f亿" IDS_MAINFRAME_SZINDEXTIP "深:%2.f %+.2f %.2f亿" 主界面右下角,大盘指数,时间显示 , if( TIMER_TIME == nIDEvent ) { CSPTime time = CSPTime::GetCurrentTime(); …

去除gif动图背景的工具网站

选择视频或GIF - 取消屏幕 (unscreen.com)https://www.unscreen.com/upload

【论文解读】LivePortrait:具有拼接和重定向控制的高效肖像动画

📜 文献卡 英文题目: LivePortrait: Efficient Portrait Animation with Stitching and Retargeting Control;作者: Jianzhu Guo; Dingyun Zhang; Xiaoqiang Liu; Zhizhou Zhong; Yuan Zhang; Pengfei Wan; Di ZhangDOI: 10.48550/arXiv.2407.03168摘要翻译: *旨在…

以腾讯为例,手把手教你搭建产品帮助中心

一个精心设计的产品帮助中心对于提高用户满意度和体验至关重要。腾讯,作为全球领先的互联网企业,通过其多样化的产品线(包括微信、QQ、腾讯游戏、腾讯视频等)吸引了亿万用户。下面将以腾讯为例,向您展示如何搭建一个高…

mysql修改字符集为UTF-8

启动 mysql 服务 systemctl start mysqld 登录 mysql mysql -uroot -p 查询 mysql 字符集 ## 在 mysql 命令行下查询 mysql 状态 mysql>status; 退出 mysql 并关闭 mysql ## 退出 mysql mysql>exit; ## 关闭 mysql systemctl stop mysqld 编辑 my.cnf 配置文…

Golang语法规范和风格指南(一)——简单指南

1. 前引 一个语言的规范的学习是重要的,直接关系到你的代码是否易于维护和理解,同时学习好对应的语言规范可以在前期学习阶段有效规避该语言语法和未知编程风格的冲突。 这里是 Google 提供的规范,有助于大家在开始学习阶段对 Golang 进行一…

【IT领域新生必看】深入了解Java中的静态成员变量和实例成员变量:初学者的全方位指南

文章目录 引言什么是静态成员变量?定义和使用静态成员变量示例: 静态成员变量的特点示例: 什么是实例成员变量?定义和使用实例成员变量示例: 实例成员变量的特点示例: 静态成员变量与实例成员变量的区别作用…

lodash-es 基本使用

中文文档:https://www.lodashjs.com/ cloneDeep方法文档:https://www.lodashjs.com/docs/lodash.cloneDeep#_clonedeepvalue 参考掘金文章:https://juejin.cn/post/7354940462061715497 安装: pnpm install lodash-esnpm地址&a…

关于用户咨询华为擎云L410笔记本安装Windows系统的说明

同样也是单位购买的华为擎云L410 KLVU-WDU0笔记本电脑,国产UOS系统某些软件用着不是很方便,用户咨询是否能够安装Windows10或者Windows7? 带着种种疑问也做了一些查询,之前也给一些国产设备更改过操作系统,之前的国产设…

G9 - ACGAN理论与实战

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 目录 环境步骤环境设置数据准备工具方法模型设计模型训练模型效果展示 总结与心得体会 上周已经简单的了解了ACGAN的原理,并且不经实践的编写了部分…

git pull拉取显示Already up-to-date,但文件并没有更新

1、问题: 使用git pull拉取远程仓库代码,显示更新成功(Already up-to-date),但是本地代码没有更新 这是因为本地有尚未提交的更改,和远程代码有冲突导致无法更新 2、解决方法: 可以使用git s…

MySQL架构和工作流程

引言:MySQL执行一条sql语句期间发生了什么? 想要搞清楚这个问题,我们必须了解MySQL的体系结构和工作流程 一、MySQL体系结构 MySQL由以下几个部分组成 一、server层 1.MySQL Connnectors连接器,MySQL的连接池组件,…