[数据结构] 基于交换的排序 冒泡排序快速排序

news2025/2/24 16:08:35

标题:[数据结构] 基于交换的排序 冒泡排序&&快速排序

@水墨不写bug


(图片来源于网络) 


目录

(一)冒泡排序

优化后实现:

(二)快速排序

I、实现方法: 

(1)hoare法

hoare法实现快排:

 (2)挖坑法

挖坑法实现:

(3)双指针法 

双指针法实现: 

 II、快速排序复杂度分析:

比较完备的快速排序实现如下:


正文开始:

(一)冒泡排序

 

时间复杂度:O(N^2)

空间复杂度:O(1)

特点:数组接近有序时,可通过优化来提高效率。

稳定性:稳定

冒泡排序:

        基本思想:大数下沉,小数上浮。

        实现思路:从内循环到外循环,从一趟到多趟。

        冒泡排序通过两层循环来实现,内层循环实现其中的一趟遍历,在一趟的遍历中,需要注意要控制好左右区间边界,冒泡排序的实现方式是多样的,无论用何种实现方式,最主要的是控制好边界,以及内外层循环的衔接;以下是一种冒泡排序的写法:


void BubbleSort(vector<int>& nums)
{
	int n = nums.size();
	for (int j = 0; j < n - 1; ++j)
	{
		for (int i = 0; i < n - 1 - j; ++i)
		{
			if (nums[i] > nums[i + 1])
			{
			
				::swap(nums[i], nums[i + 1]);
			}
		}
	}
}

优化:

        如果在一次遍历的过程中,没有进入if()交换,这已经说明数组已经有序,可以直接停止排序。

优化后实现:


void BubbleSort(vector<int>& nums)
{
	int n = nums.size();
	for (int j = 0; j < n - 1; ++j)
	{
		int ex = 0;
		for (int i = 0; i < n - 1 - j; ++i)
		{
			if (nums[i] > nums[i + 1])
			{
				ex = 1;
				::swap(nums[i], nums[i + 1]);
			}
		}
		if (ex == 0)
			break;
	}
}


(二)快速排序

时间复杂度:O(NlogN)

空间复杂度:

特点:当数据接近有序,比如逆序的时候;或者选取的key在数据中大量存在时,快速排序时间复杂度会退化为O(N^2),这是相当严重的缺陷。

稳定性:不稳定。

        快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法。

        基本思想:任取待排序元素序列中的某元素(记为key)作为基准值,按照key值将待排序集合分割成两子序列,左子序列中所有元素均小于基准值key,右子序列中所有元素均大于基准值key。然后递归,左右子序列重复该过程,直到所有元素都排列在相应位置上为止。

        本质就是将数组根据key值分为两部分,一部分比key大,一部分比key小。对于每一个部分,再次进行如上操作,直到数组不可再分为止。这就是递归实现的浅层次的直观理解。但是递归不是本文的重点,关于递归,我会在后面与你分享。 

I、实现方法: 

(1)hoare法

        hoare法是快排的提出者hoare提供的方法,是一种经典的实现方法。

实现原理:

        定义两个下标:左下标L  和  右下标R;

        随机选取一个key值,习惯上我们选择区间的最左侧的元素为key;

        让右下标先走,向左寻找比key小的值,找到后停下来:

 停下来后:

 左下标再向右寻找比key大的值,找到后停下来:

此时,交换两个下标对应的值:

 

接下来继续执行上述步骤(R先走),我展示关键步骤:

 两下标找到要求目标并交换:

直到遇到特殊情况:两下标相遇

 

 这时停止停止循环,将最左侧元素与相遇处的元素交换位置:
即可完成一次二分。

        接下来,对于左右区间再次进行上述操作,直到区间不可再分为止。


但是如何保证相遇处的值一定小于key呢?

对于相遇这个事件,有且仅有两种情况:

只可能是R向左移动遇到L;或者是L向右移动遇到R;

        (1)R向左移动遇到L:有两种可能情况

                        a,第一次R由于没有找到比key小的值,直接一路向左遇到left,此时left就是key,然后执行自己与自己交换:此时相遇的位置的值就是key本身。

                        b,第一次之后R向左遇到L,你要想清楚,在此之前L停止的地方是被交换后的原先R的值(它是比key小的);在这样的前提条件下,R向左移动与L相遇了,说明R没有找到小于key的元素,与L相遇后指向L的比key小的值。

        (2)L向右移动遇到R

                        R先走,在找到比key小的位置停下,在此前提下,L向右移动与R相遇了,L指向R的比key小的值。

hoare法实现快排:


void QuickSort(vector<int>& nums,int left,int right)
{
	//递归出口,此时区间不存在或者只有一个值
	if (left >= right)
		return;
	//保存左右下标的值,便于在递归时找到原来的区间边界
	int begin = left, end = right;
	//keyi来记录左区间的下标
	int keyi = left;

	while (left < right)
	{
		//右下标先走,找小
		while (left < right && nums[keyi] <= nums[right])
		{
			--right;
		}//左区间再走,找大
		while (left < right && nums[left] <= nums[keyi])
		{
			++left;
		}
		::swap(nums[left], nums[right]);
	}//此时一趟完毕,将key与相遇位置交换
	::swap(nums[left], nums[keyi]);
	keyi = left;//更新keyi

	//递归左右区间
	QuickSort(nums, begin, keyi);
	QuickSort(nums, keyi+1, end);
}

 (2)挖坑法

实现原理:

        由于左边有坑,所以右下标先走。

        找小,找到后停下来,将找到的值放在坑中,R的位置就成为了新的坑:

此时坑在右边,左边下标先走,找大:

找到后交换,左边又成为新的坑。

以此类推,直到左右相遇,相遇的位置一定是坑,此时将key放到坑中,完成单趟:

依然是左边都是比6小,右边都是比6大,说明没有错误。

挖坑法实现:

void QuickSort_(vector<int>& nums, int left, int right)
{
	if (left >= right)
		return;
	int begin = left, end = right;
	int key = nums[left];//记住key的值
	int hole = left;//开始挖坑
	while (left < right)
	{
		//右先找比key大的
		while (left < right && nums[right] >= key)
			right--;
		//找到后,填坑,然后挖新坑
		nums[hole] = nums[right];
		hole = right;
		//左找比key小的
		while (left < right && nums[left] <= key)
			left++;
		//找到后,填坑,然后挖新坑
		nums[hole] = nums[left];
		hole = left;
	}
	//此时相遇了,把key值放在坑里
	nums[hole] = key;

	QuickSort_(nums,begin,hole);
	QuickSort_(nums,hole + 1,end);
}

(3)双指针法 

 

// 设置前指针prev,指向首元素,遍历指针cur指向第二个元素,
// 接下来cur开始找小,如果没找到小,就一直往前走;

//如果找到小的了,就先停下来,然后prev往前走一步,再和cur交换值,然后cur继续向后,重复上述步骤,
// 最后cur走出数组后,循环终止!此时prev指向的位置和keyi的位置交换。

我们详细看一下过程:

        

双指针法实现: 


void QuickSort__(vector<int>& nums, int left, int right)
{
	if (left >= right)
		return;
	int begin = left, end = right;
	int prev = left;
	int cur = left + 1;
	int keyi = left;
	while (cur <= right)//cur走出数组循环停止
	{
		//cur一直在走,如果遇到比keyi小的,就停下来等perv走一步后交换,再接着走
		if (nums[cur] < nums[keyi] && ++prev != cur)
			swap(nums[prev], nums[cur]);
		cur++;
	}
	//cur出去后,prev的值和keyi交换
	swap(nums[keyi], nums[prev]);
	QuickSort__(nums,left,keyi);
	QuickSort__(nums,keyi+1,end);
	
}

 II、快速排序复杂度分析:

        传统的快速排序在处理一些极端问题时会显得无力,接下来我们就来讨论这些极端情况,并且给出应对极端情况的方法:

1.对于选择key不合适的问题:

        在数组元素接近逆序的时候,由于我们总是在区间的最左侧选取key,如果数组接近逆序,这时选取的key无法有效的将数组分为两个等大的数组,这就导致一次只能排序一个元素,这导致快速排序的复杂度会退化为O(N^2),这就需要我们不能随便取key。可以通过随机数法在区间内随机取一个元素作为key即可。

2.关于选择key大量出现的问题:

        如果key大量出现,也会导致上述的情况,一次只能排序一个数,所以我们不能随便分区间,这就要求我们将数组分为三部分,左侧区间都小于key,中间区间则是数值等于key的元素,右侧区间是大于key的数值。

比较完备的快速排序实现如下:

class Solution {
public:
    vector<int> sortArray(vector<int>& nums) {
        srand(time(NULL));
        qsort(nums,0,nums.size()-1);
        return nums;
    }
    void qsort(vector<int>& nums,int l,int r){
        //递归出口
        if(l >= r) return;
        //数组分三块
        int key = GetRandom(nums,l,r);
        int cur = l,left = l-1,right = r+1;
        while(cur < right){
            if(nums[cur] < key) swap(nums[++left],nums[cur++]);
            else if(nums[cur] == key) cur++;
            else swap(nums[--right],nums[cur]); 
        }
        //递归排序子区间
        qsort(nums,l,left);
        qsort(nums,right,r);
    }
    int GetRandom(vector<int>& nums,int left,int right){
        return nums[ rand() % ( right - left + 1 ) + left];
    }
};

 完~

未经作者同意禁止转载

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1902169.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Adobe Photoshop 2024 v25.5.1 中文激活版下载以及安装方法教程

软件介绍 Adobe Photoshop 2024 v25.5.1 是Adobe公司的最新版图像处理软件&#xff0c;它提供了强大的图像编辑工具和智能自动化功能&#xff0c;包括图像修复、色彩校正和滤镜效果&#xff0c;以满足专业人士和业余爱好者的需求。这款软件还支持矢量图形设计和实时协作&#…

【程序人生】来CSDN五周年了,简单总结下初心、收获、未来憧憬

最近CSDN站内私信说&#xff0c;已经创作五周年了。想想确实应该写一点东西&#xff0c;总结一下初心是什么、经历了什么、收获了什么、现状怎么样、未来会如何规划写文章这件事。算是我自己的一份总结&#xff0c;也许也可以给一些刚上大学的年轻朋友参考一下&#xff0c;坚持…

【Linux】进程创建和终止 | slab分配器

进程创建 fork 1.fork 之后发生了什么 将给子进程分配新的内存块和内核数据结构&#xff08;形成了新的页表映射&#xff09;将父进程部分数据结构内容拷贝至子进程添加子进程到系统进程列表当中fork 返回&#xff0c;开始调度器调度 这样就可以回答之前返回两个值&#xff1f…

Autosar Dcm配置-0x85服务配置及使用-基于ETAS软件

文章目录 前言Dcm配置DcmDsdDcmDsp代码实现总结前言 0x85服务用来控制DTC设置的开启和关闭。某OEM3.0架构强制支持0x85服务,本文介绍ETAS工具中的配置 Dcm配置 DcmDsd 配置0x85服务 此处配置只在扩展会话下支持(具体需要根据需求决定),两个子服务Disable为0x02,Enable…

3.pwn 函数调用流程,调用约定

前置准备 pop: Pop指令的作用是弹栈&#xff0c;将栈顶的数据弹出到寄存器&#xff0c;然后栈顶指针向下移动一个单位。 具体来说:如pop rax&#xff0c;作用就是mov rax[rsp];add rsp 8; push: Push指令的作用就是压栈&#xff0c;将栈顶指针向上移动一个单位的距离&#xf…

38 IO流

目录 C语言的输入和输出流是什么CIO流stringstream的简单介绍 1. C语言的输入与输出 C语言中我们用到的最频繁的输出方式是scanf和printf&#xff0c;scanf&#xff1a;从标准输入设备&#xff08;键盘&#xff09;读取数据&#xff0c;并将值存在变量中。printf&#xff1a;…

【MySQL】锁(黑马课程)

【MySQL】锁 0. 锁的考察点1. 概述1. 锁的分类1.1 属性分类1.2 粒度分类 2. 全局锁2.1 全局锁操作2.2.1 备份问题 3. 表级锁3.1 表锁3.2 语法3.3 表共享读锁&#xff08;读锁&#xff09;3.4 表独占写锁&#xff08;写锁&#xff09;3.5 元数据锁(meta data lock, MDL)3.6 意向…

第5章 认证授权:需求分析,Security介绍(OAuth2,JWT),用户认证,微信扫码登录,用户授权

1 模块需求分析 1.1 什么是认证授权 截至目前&#xff0c;项目已经完成了课程发布功能&#xff0c;课程发布后用户通过在线学习页面点播视频进行学习。如何去记录学生的学习过程呢&#xff1f;要想掌握学生的学习情况就需要知道用户的身份信息&#xff0c;记录哪个用户在什么…

AIGC专栏12——EasyAnimateV3发布详解 支持图文生视频 最大支持960x960x144帧视频生成

AIGC专栏12——EasyAnimateV3发布详解 支持图&文生视频 最大支持960x960x144帧视频生成 学习前言项目特点生成效果相关地址汇总项目主页Huggingface体验地址Modelscope体验地址源码下载地址 EasyAnimate V3详解技术储备Diffusion Transformer (DiT)Hybrid Motion ModuleU-V…

智慧校园-教职工管理系统总体概述

在当今信息化时代&#xff0c;智慧校园教职工管理系统成为了提升教育机构管理效能的重要工具。该系统巧妙融合了先进的信息技术&#xff0c;为教职工的日常管理带来了一场静悄悄的革命。它不仅是一个信息存储库&#xff0c;记录着每位教职工从加入到离开的完整职业轨迹&#xf…

笔记12:if语句编程练习(打印输出三个数据中的最小值)

输入三个数&#xff0c;分别放入变量x&#xff0c;y&#xff0c;z中 打印输入数据中最小的那一个数 解决方案1 定义中间变量 t 1.比较x和y的大小关系&#xff0c;将较小的值赋值给t 2.比较t和z的大小关系&#xff0c;将较小的值赋值给t 3.t 中保存的就是3个数中的较小值 &am…

限时免费!国产Sora快手可灵Web网页端及全新功能上线!国货之光!

大家好&#xff0c;我是程序员X小鹿&#xff0c;前互联网大厂程序员&#xff0c;自由职业2年&#xff0c;也一名 AIGC 爱好者&#xff0c;持续分享更多前沿的「AI 工具」和「AI副业玩法」&#xff0c;欢迎一起交流~ 快手可灵&#xff08;Kling&#xff09;这回是真的出息了&…

Python爬取股票信息-并进行数据可视化分析,绘股票成交量柱状图

为了使用Python爬取股票信息并进行数据可视化分析&#xff0c;我们可以使用几个流行的库&#xff1a;requests 用于网络请求&#xff0c;pandas 用于数据处理&#xff0c;以及 matplotlib 或 seaborn 用于数据可视化。 步骤 1: 安装必要的库 首先&#xff0c;确保安装了以下P…

Hack The Box -- Blazorized

一、准备工作 端口扫描 详细扫描 Starting Nmap 7.94SVN ( https://nmap.org ) at 2024-06-30 21:39 EDT Nmap scan report for 10.10.11.22 Host is up (0.26s latency).PORT STATE SERVICE VERSION 53/tcp open domain Simple DNS Plus 80/tcp op…

海外发稿: 秘鲁-区块链新闻媒体通稿宣发

秘鲁媒体单发 随着全球化的不断深入&#xff0c;海外发稿已经成为众多企业宣传推广的重要方式之一。而在海外发稿的选择中&#xff0c;秘鲁媒体的地位尤为重要。秘鲁作为南美洲的重要国家之一&#xff0c;拥有众多知名媒体平台&#xff0c;包括diariodelcusco、serperuano、el…

非堆成加密是公私钥使用

对称加密学习-CSDN博客 加密算法学习-CSDN博客 非对称加密算法使用一对密钥&#xff0c;包括一个公钥和一个私钥&#xff0c;它们是数学上相关联的&#xff0c;但公钥可以公开分享&#xff0c;而私钥必须保密。以下是使用非对称加密算法的一般步骤&#xff1a; 密钥生成&…

【IT领域新生必看】深入浅出Java:揭秘`Comparator`与`Comparable`的神奇区别

文章目录 引言什么是Comparable接口&#xff1f;Comparable接口的定义实现Comparable接口示例&#xff1a; 什么是Comparator接口&#xff1f;Comparator接口的定义实现Comparator接口示例&#xff1a; Comparable与Comparator的区别排序逻辑位置示例&#xff1a; 可扩展性示例…

HashMap中的put()方法

一. HashMap底层结构 HashMap底层是由哈希表(数组),链表,红黑树构成,哈希表存储的类型是一个节点类型,哈希表默认长度为16,它不会每个位置都用,当哈希表中的元素个数大于等于负载因子(0.75)*哈希表长度就会扩容到原来的2倍 二. 底层的一些常量 三. HashMap的put()方法 当插入一…

简单的手动实现spring中的自动装配案例

简简单单的实现一个spring中的自动装配和容器管理的小骚操作。 1&#xff0c;创建AutoSetBean.java 使用injectBeans静态方法&#xff0c;可以扫描指定包下的所有带MyInject注解的字段&#xff0c;如果在beans的Map中存在这个字段的实例化类&#xff0c;则执行装配。 import…

c语言题目:成绩管理系统

&#x1f3c6;本文收录于「Bug调优」专栏&#xff0c;主要记录项目实战过程中的Bug之前因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&收藏&&…