51单片机嵌入式开发:3、STC89C52操作8八段式数码管原理

news2024/11/15 10:22:57

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档

STC89C52操作8八段式数码管原理

  • 1 8位数码管介绍
    • 1.1 8位数码管概述
    • 1.2 8位数码管原理
    • 1.3 应用场景
  • 2 原理图图解
    • 2.1 74HC573原理
    • 2.2 74HC138原理
    • 2.3 数码管原理
  • 3 数码管程序
    • 3.1 点亮一个数码管
    • 3.2 扫描显示数码管
    • 3.3 显示一组数据
    • 3.4 Protues仿真
  • 4 总结


1 8位数码管介绍

1.1 8位数码管概述

8位数码管是一种显示器件,用于显示数字、字母和一些特殊符号。它由8个数码管组成,每个数码管可以显示0到9之间的数字。通过控制每个数码管的亮灭状态,可以组合显示不同的数字或字符。

1.2 8位数码管原理

数码管通常由共阳极或共阴极的LED(发光二极管)组成。在共阳极数码管中,每个数码管的阳极连接在一起,而在共阴极数码管中,每个数码管的阴极连接在一起。通过控制每个数码管的阳极或阴极,可以选择性地点亮其中一个数码管。
以共阳极的8位数码管为例,每个数码管通常由7个LED段(a,b,c,d,e,f,g)和一个小数点(dp)组成。这些段可以按照特定的图案和编码来点亮,以显示数字、字母或符号。

1.3 应用场景

常见的8位数码管编码方式是使用BCD(二进制编码十进制)码或者ASCII码。BCD码是一种二进制表示法,其中每个十进制数字用4位二进制码表示。ASCII码是一种字符编码标准,将每个字符映射到一个唯一的数值。
使用8位数码管,可以显示0到9的数字以及一些字母和符号。每个数码管可以独立显示一个字符,因此可以同时显示8个字符。通过控制每个数码管的亮灭状态和编码,可以实现多种显示效果。

2 原理图图解

根据开发板原理图,找到数码管原理图。

在这里插入图片描述

数码管原理图主要由三部分组成,74HC573、74HC138、数码管,下面分别对三个元器件进行分析。

2.1 74HC573原理

高性能硅门 CMOS 器件 SL74HC573 跟 LS/AL573 的管脚一样。器件的输入是和标准 CMOS 输出兼容 的;加上拉电阻,他们能和 LS/ALSTTL 输出兼容。 当锁存使能端为高时,这些器件的锁存对于数据是透明的(也就是说输出同 步)。当锁存使能变低时,符合建立时间和保持时间的数据会被锁存。
×输出能直接接到 CMOS,NMOS 和 TTL 接口上
×操作电压范围:2.0V~6.0V
×低输入电流:1.0uA
×CMOS 器件的高噪声抵抗特性

74HC573逻辑图如下

在这里插入图片描述

根据逻辑图,可以得出功能表,当输出使能为L,锁存功能为H时,输出端口Q状态与输入信号的D状态完全一致,我们选择的也是这种模式,在开发板上,使用跳线帽将“锁存”引脚和VCC5V引脚短接。
在这里插入图片描述

2.2 74HC138原理

特点
• 解复用能力
• 多输入使能,便于扩展
• 存储芯片选择解码的理想选择
• 低电平有效输出互斥输出
• 输出能力:标准
• ICC 类别:微星
概述
74HC/HCT138 是高速硅栅 CMOS 器件,与低功耗肖特基 TTL (LSTTL) 引脚兼容。它们的指定符合 JEDEC 标准第 7A 号。74HC/HCT138解码器接受三个二进制加权地址输入(A0、A1、A2),启用后提供8个互斥的低电平有效输出(Y0至Y7)。“138”具有三个使能输入:两个有效低电平(E1和E2)和一个高电平有效(E3)。除非 E1 和 E2 为低电平且 E3 为高电平,否则每个输出都将为高电平。这种多重使能功能允许将“138”轻松并行扩展到 1-of-32(5 行至 32 行)解码器,只需四个“138”IC 和一个逆变器。“138”可用作八路输出解复用器,方法是使用一个有效的低电平使能输入作为数据输入…

74HC/HCT138期间原理图如下
在这里插入图片描述

在这里插入图片描述

根据逻辑原理图可知,我们使用一个译码器,只需要将E1E2为低电平,E3为高电平,然后A0A1A2输入不同的值,即可在相同值序号的Yn引脚输出低电平。

在这里插入图片描述

在这里插入图片描述

2.3 数码管原理

根据数码管内部的连接方式,所以数码管又分为共阳数码管(低电平点亮)与共阴数码管(高电平点亮),共阳数码管内部是将所有LED的正极接在一起组成的公共端接电源+5V,只需要控制对应的LED负极就可以显示数字, 所以共阳级低电平才能点亮,共阴极与共阳级刚好相反,共阴极数码管内部将LED的负极接在一起形成公共端接地 0V,只需要控制对应的LED正极就能够显示数字,所以共阴极数码管高电平点亮。共阳极数码管与共阴极数码管内部结构如下图所示。
我们开发板上选用的数码管是共阴极数码管,具体理论原理图,如下所示,只需在不同的控制端给定高电平,即可点亮8段式数码管对应的位置,达到显示效果。

在这里插入图片描述

3 数码管程序

3.1 点亮一个数码管

/********************************************************
函数名称:sys_ledtube_on1
函数功能:点亮一个数码管全为亮起来
入口参数:
出口参数:
修    改:
内    容:
********************************************************/
void sys_ledtube_on1(void)
{
	//根据原理图,将P0口全部输出高电平,P2选择0号数码管
	P0=0xFF;//取显示数据,段码
	P2=0;  	//取位码
}

3.2 扫描显示数码管

// 显示段码值01234567,可对应原理图查看显示不同图形对应的引脚高点电平配置状态
unsigned char const EL[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};
/********************************************************
函数名称:sys_ledtube_on2
函数功能:显示一组数据
入口参数:
出口参数:
修    改:
内    容:
********************************************************/
static unsigned char ledtube_cnt = 0;
void sys_ledtube_on2(void)
{
	ledtube_cnt++;
	if(ledtube_cnt>7)
	{
		ledtube_cnt = 0;
	}
	P0 = 0x00;				//防止切换数码管瞬间有虚影出现
	P2 = 0x00;
	P0 = EL[ledtube_cnt];	//取显示数据,段码
	P2 = ledtube_cnt;  		//取位码
	
	//根据人眼适应虚影缓冲时间为50ms左右
	//我们调整delay在500以下可以看到明显的看起来是一串数据一起显示
	delay(50000); 			
}
#ifndef __C51_LEDTUBE_H__
#define __C51_LEDTUBE_H__


extern unsigned char const EL[];

extern void sys_ledtube_on1(void);
extern void sys_ledtube_on2(void);




#endif

主程序中

void main (void)
{
	//8个指示灯的操作
	sys_led();
	sys_led_test();
	sys_led_test1();
	
	sys_ledtube_on1();
	
	//主循环中添加其他需要一直工作的程序
	while (1)
	{
		sys_ledtube_on2();
	}
}

3.3 显示一组数据

/********************************************************
函数名称:sys_ledtube_on2
函数功能:显示一组数据
入口参数:
出口参数:
修    改:
内    容:
********************************************************/
static unsigned char ledtube_cnt = 0;
void sys_ledtube_on2(void)
{
	ledtube_cnt++;
	if(ledtube_cnt>7)
	{
		ledtube_cnt = 0;
	}
	P0 = 0x00;				//防止切换数码管瞬间有虚影出现
	P2 = 0x00;
	P0 = EL[ledtube_cnt];	//取显示数据,段码
	P2 = ledtube_cnt;  		//取位码
	
	//根据人眼适应虚影缓冲时间为50ms左右
	//我们调整delay在500以下可以看到明显的看起来是一串数据一起显示
	delay(100); 			
}

3.4 Protues仿真

Protues仿真图如下所示,注意P0口作为输出控制引脚需要有上拉电阻,不然无法输出高电平。

在这里插入图片描述

4 总结

数码管是一种常见的数字显示设备,广泛应用于各种领域。以下是一些数码管应用市场的例子:

  1. 时钟和计时器:数码管常被用于制造电子时钟、计时器和倒计时器。这些设备可以在办公室、学校、体育场馆、交通信号灯等地方使用。

  2. 家电和电子产品:数码管被广泛应用于家用电器和电子产品中,如微波炉、洗衣机、冰箱、电视机、音响等。数码管可以显示时间、温度、程序设置等信息。

  3. 工业自动化:在工业控制系统中,数码管常用于显示各种参数和状态信息,如温度、压力、流量、速度等。这些信息对于监控和控制工业过程非常重要。

  4. 汽车和交通系统:数码管被广泛应用于汽车仪表盘、导航系统、车载音响等设备中。它们可以显示车速、油量、里程、导航指示等信息。此外,数码管还用于交通信号灯和路牌显示。

  5. 电子游戏和娱乐设备:数码管被用于电子游戏、街机机台、赌场游戏设备等娱乐设备中。它们可以显示得分、计时、游戏状态等信息。

  6. 医疗设备:数码管在医疗设备中也有广泛应用,如医疗监护仪、血糖仪、体温计等。它们可以显示患者的生命体征、测量结果等重要数据。

  7. 通信设备:数码管常用于通信设备的显示屏,如电话、对讲机、路由器等。它们可以显示来电号码、信号强度、网络状态等信息。

这些只是数码管应用市场的一些例子,实际上,数码管在各个领域都有广泛的应用。随着科技的发展,数字显示技术也在不断进步,液晶显示屏等新型显示技术逐渐取代了一部分数码管的应用,但数码管仍然在某些特定场景中保持着重要地位。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1901408.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux系统的服务——以Centos7为例

一、Linux系统的服务简介 服务是向外部提供对应功能的进程,其运行在系统后台,能够7*24小时持续不断的提供外界随时发来的服务请求,且服务进程常驻在内存中,具有固定的端口号,通过端口号就能找到服务内容。 提供服务的一…

Linux 系统管理4——账号管理

一、用户账号管理 1、用户账号概述 &#xff08;1&#xff09;用户账号的常见分类&#xff1a; 1>超级用户&#xff1a;root uid0 gid0 权限最大。 2>普通用户&#xff1a;uid>500 做一般权限的系统管理&#xff0c;权限有限。 3>程序用户&#xff1a;1<uid&l…

OpenCV(绘图功能笔记)

目标 学习使用OpenCV绘制不同的几何形状 cv.line()&#xff0c;cv.circle()&#xff0c;cv.rectangle()&#xff0c;cv.ellipse()&#xff0c;cv.putText()等。 画线&#xff08;cv.line&#xff09; 要绘制一条线&#xff0c;需要传递线的开始和结束坐标。我们将创建一个黑…

【Oracle】Oracle常用函数

目录 聚合函数数字函数1. ABS函数&#xff1a;返回一个数的绝对值。2. CEIL函数&#xff1a;返回大于等于给定数的最小整数。3. FLOOR函数&#xff1a;返回小于等于给定数的最大整数。4. ROUND函数&#xff1a;将一个数四舍五入到指定的小数位。5. MOD函数&#xff1a;返回两个…

swin-unet编码端流程图

文章目录 1. PatchEmbed2. swinTransformerBlock2.1. window_partition2.2. WindowAttention2.3. Window_reverse2.4. MLP 3. PatchMerging完整流程图 1. PatchEmbed 2. swinTransformerBlock 2.1. window_partition 2.2. WindowAttention 2.3. Window_reverse 2.4. MLP 3. Pat…

集成学习(三)GBDT 梯度提升树

前面学习了&#xff1a;集成学习&#xff08;二&#xff09;Boosting-CSDN博客 梯度提升树&#xff1a;GBDT-Gradient Boosting Decision Tree 一、介绍 作为当代众多经典算法的基础&#xff0c;GBDT的求解过程可谓十分精妙&#xff0c;它不仅开创性地舍弃了使用原始标签进行…

模型训练之数据集

我们知道人工智能的四大要素&#xff1a;数据、算法、算力、场景。我们训练模型离不开数据 目标 一、数据集划分 定义 数据集&#xff1a;训练集是一组训练数据。 样本&#xff1a;一组数据中一个数据 特征&#xff1a;反映样本在某方面的表现、属性或性质事项 训练集&#…

昇思25天学习打卡营第15天|linchenfengxue

Pix2Pix实现图像转换 Pix2Pix概述 Pix2Pix是基于条件生成对抗网络&#xff08;cGAN, Condition Generative Adversarial Networks &#xff09;实现的一种深度学习图像转换模型&#xff0c;该模型是由Phillip Isola等作者在2017年CVPR上提出的&#xff0c;可以实现语义/标签到…

农资销售网站-计算机毕业设计源码54432

目录 摘要 Abstract 1绪论 1.1研究背景 1.2研究意义 1.3论文结构与章节安排 2农资销售网站系统分析 2.1可行性分析 2.1.1技术可行性分析 2.1.2经济可行性分析 2.1.3法律可行性分析 2.2系统功能分析 2.2.1功能性分析 2.2.2非功能性分析 2.3系统用例分析 2.4系统流…

业界数据架构的演变

目录 一、概述 二、业务处理-单体架构 三、业务处理-微服务架构 四、数据分析-大数据Lambda架构 五、数据分析-Kappa架构 六、数据分析-LambdaKappa混合架构 七、湖仓一体架构 一、概述 近年来随着越来越多的大数据技术被开源&#xff0c;例如&#xff1a;HDFS、Spark等…

数据库缓存管理

1. 简介 缓存管理器是数据库管理系统&#xff08;DBMS&#xff09;中负责管理内存中page并处理文件和索引管理器的page请求的组件。由于内存空间有限&#xff0c;我们不能将所有page存储在缓存池中。因此&#xff0c;缓存管理器需要制定替换策略&#xff0c;当空间填满时选择哪…

如何注册微信公众号

如何注册微信公众号 如何注册一个微信公众号 &#x1f60a;&#x1f4f1;摘要引言正文内容1. 准备工作内容定位和受众群体公众号名称和头像 2. 网页注册流程第一步&#xff1a;访问微信公众平台第二步&#xff1a;选择账户注册类型第三步&#xff1a;填写基本信息第四步&#x…

视频技术助力智慧城市一网统管:视频资源整合与智能化管理

随着信息技术的飞速发展&#xff0c;智慧城市已成为现代城市发展的重要方向。在智慧城市建设中&#xff0c;一网统管作为城市管理的重要策略&#xff0c;通过整合各类信息资源&#xff0c;实现资源的优化配置和问题的快速响应。其中&#xff0c;视频技术作为一网统管场景中的关…

使用Livox-Mid360激光雷达,复现FAST_LIO(保姆级教程)

前面我已经完成了mid360激光雷达的驱动安装&#xff0c;octomap的复现&#xff0c;昨天我去把这俩在正式环境中实测了一下&#xff0c;效果不好&#xff0c;走廊转角没建出来&#xff0c;我查了一下&#xff0c;应该是TF的原因&#xff0c;但这部分我还不太懂&#xff0c;看到有…

利用大模型知识库,优化智能客服问答效果 | 创新场景

ITValue 痛点 SSC&#xff08; Share Service Center &#xff0c;共享服务中心&#xff09;是企业日常接触最多的场景之一&#xff0c;更多是对内服务&#xff0c;包括 HR 、财务、IT 等。该场景对专业度要求非常高&#xff0c;知识点非常多&#xff0c;对于知识的使用者或者查…

每日一题~ leetcode 402 (贪心+单调栈)

click me! 这个贪心的推导在leetcode上已经很明确了。 click me! 删除k个数&#xff0c;可以先考虑删除一个数。这也是一种常见的思路。&#xff08;如果进行同样的操作多次&#xff0c;可以先只 考虑一次操作如何实现&#xff0c;或者他的影响。完成这一次操作后&#xff0c;…

服务器数据恢复—DS5300存储raid5阵列数据恢复案例

服务器存储数据恢复环境&#xff1a; 某单位一台某品牌DS5300存储&#xff0c;1个机头4个扩展柜&#xff0c;50块硬盘组建2组RAID5磁盘阵列&#xff08;一组raid5阵列有27块成员盘&#xff0c;存放Oracle数据库文件&#xff1b;另外一组raid5阵列有23块成员盘&#xff09;。存储…

【免费资料】IEEE33节点系统参数及拓扑图visio

主要内容 对于初学配电网的同学&#xff0c;最经典的系统即是33节点配电网系统&#xff0c;在各个研究文献中出现频次最高的也是这个系统&#xff0c;为了让大家更好了解33节点系统参数&#xff0c;本次整理了系统节点、支路参数excel以及33节点网络拓扑图visio&#xff0c…

解决IDEA每次新建项目都需要重新配置maven的问题

每次打开IDEA都要重新配置maven&#xff0c;这是因为在DEA中分为项目设置和全局设置&#xff0c;这个时候我们就需要去到全局中设置maven了。我用的是IntelliJ IDEA 2023.3.4 (Ultimate Edition)&#xff0c;以此为例。 第一步&#xff1a;打开一个空的IDEA&#xff0c;选择左…

Multisim仿真-交流数字电压表

下图为整体的原理框图&#xff0c;交流电源经过整流滤波电路转换后&#xff0c;送入模数转换电路&#xff0c;经译码给到显示电路&#xff0c;由其显示交流电源的有效值。 信号发生器XFG1输出正弦波信号(峰峰值)&#xff0c;XMM1测量有效值&#xff0c;U6数码管显示有效值。仿真…