游戏AI的创造思路-技术基础-计算机视觉

news2025/1/11 10:15:56

让游戏的AI具备“眼睛”和“视觉”,就是通过计算机视觉的方法进行的。现在,越来越多的游戏,特别是动捕类游戏都在使用这个方法。当然,计算机视觉不仅仅用于游戏,越来越多的应用使用到这个技术

目录

1. 定义

2. 发展历史

3. 公式和函数

3.1. 图像处理基础公式

3.1.1. 灰度化公式

3.1.2. 二值化公式

3.2. 图像滤波公式

3.3. 边缘检测公式

3.4. 特征提取公式

3.5. 评估指标公式

3.5.1. 准确率(Accuracy)

3.5.2. 召回率(Recall)/ 查全率

3.5.3. 精确率(Precision)/ 查准率

3.5.4. F1分数(F1-Score)

3.6. 目标检测指标

3.6.1. 交并比(IOU)

3.6.2. 平均精确率(AP)和平均精确率均值(mAP)

3.7. Python代码示例

4. 运行原理

4.1. 基本原理

4.2. Python实现

5. 优缺点

6. 运用计算机视觉的游戏AI使用场景及实例

6.1. 使用场景

6.2. 实例1

6.3. 实例2

6.3.1. 实现步骤

6.2.2. Python代码示例


1. 定义

游戏AI运用计算机视觉,是指在游戏开发和运行过程中,利用计算机视觉技术使游戏中的角色(NPC)或系统能够识别、分析和理解游戏中的图像和视频数据,从而做出更加智能的决策和反应。

这种技术结合了图像处理、模式识别和机器学习,使游戏中的非玩家角色能够像人类一样“看到”并理解游戏世界。

2. 发展历史

计算机视觉的发展可以追溯到20世纪50年代,当时科学家们开始研究生物视觉的工作原理。

到了60年代,计算机视觉作为一个独立的领域开始萌芽。

70年代,开创性地提出了识别流程。

80年代则着眼于提取特征。

90年代则进行了图像分割的研究。

进入21世纪后,随着计算机运算能力的增强和深度学习算法的兴起,计算机视觉取得了长足的进步,特别是在目标识别、目标跟踪和场景理解等方面。

在游戏AI领域,计算机视觉的应用也随着技术的进步而不断发展。

现代游戏AI利用深度学习算法,能够处理复杂的图像数据,并在游戏中实现高度逼真的交互和决策。

3. 公式和函数

计算机视觉是一个涉及图像处理、模式识别、机器学习等多个领域的复杂学科,它利用计算机和相关算法来模拟人类的视觉系统,以实现对图像和视频的理解和分析。在计算机视觉中,公式和函数起着至关重要的作用,它们是实现各种视觉任务的基础。以下是对计算机视觉中一些常见公式和函数的详细介绍:

3.1. 图像处理基础公式

3.1.1. 灰度化公式

平均法

将彩色图像的红色、绿色和蓝色通道的值相加后除以3,得到灰度值。公式为:

灰度值 = (R + G + B) / 3

3.1.2. 二值化公式

全局阈值法

将图像的灰度值与一个预设的阈值进行比较,大于阈值的像素点设置为白色(或黑色),小于阈值的像素点设置为黑色(或白色)。公式可简化为:

二值化结果 = (灰度值 > 阈值) ? 255 : 0。

3.2. 图像滤波公式

高斯滤波

高斯滤波是一种常用的图像平滑方法,它通过卷积操作对图像进行模糊处理,以去除噪声。高斯滤波的公式为:

滤波结果 = (像素点 * 滤波模板) / 滤波模板权值之和

其中,滤波模板是一个权重矩阵,其元素值由高斯函数计算得出。

3.3. 边缘检测公式

Sobel算子

Sobel算子是一种用于边缘检测的一阶导数算子。它通过计算图像在水平和垂直方向的梯度来检测边缘。Sobel算子的公式包括两个3x3的矩阵,分别用于计算水平梯度Gx和垂直梯度Gy。公式如下:

Gx = [-1 0 1; -2 0 2; -1 0 1] * 像素值

Gy = [-1 -2 -1; 0 0 0; 1 2 1] * 像素值

3.4. 特征提取公式

颜色直方图

颜色直方图是描述图像颜色分布的一种特征表示方法。它通过统计每个颜色通道的像素数量来构建直方图。公式可简单表示为:

颜色直方图 = 统计每个颜色通道的像素数量

3.5. 评估指标公式

在计算机视觉任务中,特别是分类和目标检测任务中,评估模型的性能是非常重要的。以下是一些常见的评估指标公式:

3.5.1. 准确率(Accuracy)

准确率是预测正确的样本数占总样本数的比例。公式为:

Accuracy = (TP + TN) / (TP + TN + FP + FN)

3.5.2. 召回率(Recall)/ 查全率

召回率(或查全率)是预测为正例的样本中实际为正例的比例。公式为:

Recall = TP / (TP + FN)

3.5.3. 精确率(Precision)/ 查准率

精确率(或查准率)是预测为正例的样本中真正为正例的比例。公式为:

Precision = TP / (TP + FP)

3.5.4. F1分数(F1-Score)

F1分数是精确率和召回率的调和平均数,用于综合评估模型的性能。公式为:

F1-Score = 2 * (Precision * Recall) / (Precision + Recall)

3.6. 目标检测指标

3.6.1. 交并比(IOU)

交并比(Intersection over Union, IOU)是目标检测中衡量预测框与真实框重叠程度的指标。公式为:

IOU = |GT ∩ Predict| / |GT ∪ Predict| = intersection / (GT + Predict - intersection)

3.6.2. 平均精确率(AP)和平均精确率均值(mAP)

AP(Average Precision)是PR曲线下的面积,用于评估单个类别的检测性能。mAP(mean Average Precision)则是对所有类别的AP取平均,用于评估整个检测模型的性能。

3.7. Python代码示例

以下是一个使用Python和OpenCV库进行图像读取、灰度化和二值化的简单示例:

import cv2  
  
# 读取图像  
image = cv2.imread('path_to_image.jpg')  
  
# 灰度化  
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  
  
# 二值化  
_, binary_image = cv2.threshold(gray_image, 127, 255, cv2.THRESH_BINARY)  
  
# 显示图像  
cv2.imshow('Original Image', image)  
cv2.imshow('Gray Image', gray_image)  
cv2.imshow('Binary Image', binary_image)  
  
# 等待按键操作后关闭窗口  
cv2.waitKey(0)  
cv2.destroyAllWindows()

上述代码示例中的path_to_image.jpg应替换为实际图像文件的路径。此外,二值化阈值(在示例中为127)可能需要根据具体图像进行调整以获得最佳效果。

对于更高级的计算机视觉任务,如目标检测或人脸识别,通常会使用深度学习框架(如TensorFlow或PyTorch)和预训练的模型。

4. 运行原理

4.1. 基本原理

游戏AI运用计算机视觉的运行原理主要包括以下几个步骤:

  1. 图像采集:从游戏环境中捕获图像或视频帧。
  2. 预处理:对图像进行缩放、裁剪、去噪等预处理操作。
  3. 特征提取:使用图像处理算法或深度学习模型从图像中提取关键特征。
  4. 分析与理解:利用机器学习或深度学习算法对提取的特征进行分析,理解图像中的内容和上下文。
  5. 决策与反应:基于分析结果,游戏AI做出决策并生成相应的反应或动作。

4.2. Python实现

要在游戏AI中实现计算机视觉以响应玩家行为,我们可以使用Python和一些流行的库,如OpenCV和NumPy。以下是一个简化的实现步骤,包括图像采集、预处理、特征提取、图像内容分析与理解,以及决策与反应。

首先,确保你已经安装了必要的库:

pip install opencv-python numpy

然后,你可以使用以下Python代码来实现这些步骤:

import cv2  
import numpy as np  
  
# 1. 图像采集  
# 这里我们使用OpenCV从摄像头捕获实时视频流  
cap = cv2.VideoCapture(0)  
  
# 2. 预处理  
# 定义一个简单的预处理函数,例如转换为灰度图像  
def preprocess_image(image):  
    return cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  
  
# 3. 特征提取  
# 定义一个函数来提取特征,这里我们使用简单的边缘检测作为示例  
def extract_features(image):  
    edges = cv2.Canny(image, threshold1=100, threshold2=200)  
    return edges  
  
# 4. 分析与理解图像中内容  
# 定义一个函数来分析图像并做出决策  
def analyze_image(features):  
    # 假设如果检测到的边缘数量超过某个阈值,则玩家正在做出某种动作  
    edge_count = np.sum(features > 0)  
    return edge_count > 1000  # 这是一个示例阈值  
  
# 5. 决策与反应  
# 定义一个函数来根据分析结果做出反应  
def react_to_player(analysis_result):  
    if analysis_result:  
        print("玩家正在做出重要动作,AI需要做出反应!")  
    else:  
        print("玩家处于静止状态,AI保持观察。")  
  
# 主循环  
while True:  
    ret, frame = cap.read()  
    if not ret:  
        break  
  
    # 预处理  
    processed_image = preprocess_image(frame)  
  
    # 特征提取  
    features = extract_features(processed_image)  
  
    # 分析与理解  
    analysis_result = analyze_image(features)  
  
    # 决策与反应  
    react_to_player(analysis_result)  
  
    # 显示图像(可选)  
    cv2.imshow('Game AI Vision', frame)  
  
    # 按'q'键退出  
    if cv2.waitKey(1) & 0xFF == ord('q'):  
        break  
  
# 释放摄像头和关闭窗口  
cap.release()  
cv2.destroyAllWindows()

 这个例子非常简化,并且不是真正的游戏AI实现。

在实际的游戏AI中,你需要使用更复杂的图像处理技术、特征提取方法和机器学习算法来准确地识别和响应玩家的行为。

此外,你可能还需要考虑实时性能优化、多玩家支持、网络通信等方面的问题。

5. 优缺点

优点

  • 智能化:使游戏中的角色能够像人类一样“看到”并理解游戏世界,提高游戏的真实感和沉浸感。
  • 灵活性:能够适应不同的游戏环境和场景,做出更加智能和灵活的决策。
  • 可扩展性:随着技术的不断进步,计算机视觉在游戏AI中的应用也将不断拓展和深化。

缺点

  • 计算复杂度高:需要处理大量的图像数据,对计算资源要求较高。
  • 数据依赖性强:需要大量的高质量训练数据才能获得良好的性能。
  • 隐私和伦理问题:在某些情况下可能涉及个人隐私和伦理问题,需要合理监管和使用控制。

6. 运用计算机视觉的游戏AI使用场景及实例

6.1. 使用场景

  • NPC行为决策:使NPC能够根据游戏场景中的图像数据做出更加智能的行为决策。
  • 玩家行为分析:分析玩家的游戏行为模式,优化游戏设计和平衡性。
  • 环境交互:使游戏中的角色能够与环境中的物体进行更加真实的交互。

6.2. 实例1

一个典型的实例是在一款角色扮演游戏中,利用计算机视觉技术使NPC能够根据玩家的位置、动作和表情做出相应的反应。

例如,当玩家靠近NPC时,NPC能够“看到”玩家并主动发起对话;当玩家做出攻击动作时,NPC能够识别并采取相应的防御措施。

Python代码

这里给出的是一个概念性的伪代码:

# 假设有一个函数detect_player(frame)用于从游戏帧中检测玩家  
# 和一个函数analyze_player_behavior(player_info)用于分析玩家行为  
  
def game_loop():  
    while game_is_running:  
        frame = capture_game_frame()  # 捕获当前游戏帧  
        player_info = detect_player(frame)  # 检测玩家位置和动作  
        behavior = analyze_player_behavior(player_info)  # 分析玩家行为  
          
        # 根据分析结果,控制NPC的行为  
        control_npc_behavior(behavior)  
  
# 注意:这里的detect_player和analyze_player_behavior函数需要具体实现,  
# 并可能涉及复杂的图像处理、模式识别和机器学习算法。

这个伪代码展示了如何在游戏循环中使用计算机视觉技术来分析玩家行为并控制NPC的反应。然而,在实际应用中,detect_playeranalyze_player_behavior函数的实现将非常复杂,并需要借助深度学习等高级技术。

6.3. 实例2

在计算机视觉中,从摄像头获取的图像中识别出人体以及人体姿态,并提取骨架及关节数据,通常涉及到使用深度学习模型,特别是卷积神经网络(CNN)来处理图像,并识别出图像中的人体以及他们的姿态。

以下是一个简化的实现步骤,以及对应的Python代码示例,使用了OpenPose这个流行的库来实现人体姿态估计。

6.3.1. 实现步骤

  1. 安装必要的库
    • 安装OpenPose或其他类似的人体姿态估计库。
    • 安装处理图像的库,如OpenCV。
  2. 设置摄像头
    • 使用OpenCV来捕获摄像头的实时视频流。
  3. 人体姿态估计
    • 对每一帧图像使用OpenPose进行人体检测和姿态估计。
    • 提取出每个人的骨架和关节数据。
  4. 显示结果
    • 在图像上绘制骨架和关节点。
    • 显示处理后的图像。
  5. (可选)保存或处理数据
    • 将骨架和关节数据保存到文件或数据库中。
    • 进行进一步的数据分析或处理。

6.2.2. Python代码示例

import cv2  
import pyopenpose as op  
  
# 配置OpenPose参数  
params = {  
    "model_folder": "/path/to/openpose/models/",  
    "hand": False,  
    "face": False,  
    "body": 1,  
}  
  
# 初始化OpenPose对象  
opWrapper = op.WrapperPython()  
opWrapper.configure(params)  
opWrapper.start()  
  
# 打开摄像头  
cap = cv2.VideoCapture(0)  
  
while True:  
    # 读取一帧图像  
    ret, frame = cap.read()  
    if not ret:  
        break  
  
    # 使用OpenPose处理图像  
    datum = op.Datum()  
    datum.cvInputData = frame  
    opWrapper.emplaceAndPop([datum])  
  
    # 提取骨架和关节数据  
    if datum.poseKeypoints is not None:  
        print("Detected people and their keypoints:")  
        for person in datum.poseKeypoints:  
            print(person)  # 这里打印出每个人的关节数据  
  
    # 在图像上绘制骨架和关节点  
    cv2.imshow("OpenPose", datum.cvOutputData)  
  
    # 按'q'键退出  
    if cv2.waitKey(1) & 0xFF == ord('q'):  
        break  
  
# 释放摄像头和关闭窗口  
cap.release()  
cv2.destroyAllWindows()

请注意,你需要将"/path/to/openpose/models/"替换为你的OpenPose模型文件夹的实际路径。此外,确保你已经正确安装了OpenPose和所有必要的依赖项。

这个代码示例提供了一个基本的框架,你可以根据自己的需求进行修改和扩展。

例如,你可以添加代码来保存关节数据,或者对数据进行进一步的分析和处理。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1896380.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【面向就业的Linux基础】从入门到熟练,探索Linux的秘密(九)-git(1)

Git是一个版本管理控制系统(缩写VCS),它可以在任何时间点,将文档的状态作为更新记录保存起来,也可以在任何时间点,将更新记录恢复回来。 文章目录 前言 一、git是什么 二、git基本概念 三、git基本命令 总结…

02-android studio实现下拉列表+单选框+年月日功能

一、下拉列表功能 1.效果图 2.实现过程 1&#xff09;添加组件 <LinearLayoutandroid:layout_width"match_parent"android:layout_height"wrap_content"android:layout_marginLeft"20dp"android:layout_marginRight"20dp"android…

vue配置sql规则

vue配置sql规则 实现效果组件完整代码父组件 前端页面实现动态配置sql条件&#xff0c;将JSON结构给到后端&#xff0c;后端进行sql组装。 这里涉及的分组后端在组装时用括号将这块规则括起来就行&#xff0c;分组的sql连接符&#xff08;并且/或者&#xff09;取组里的第一个。…

细说MCU的ADC模块单通道连续采样的实现方法

目录 一、工程依赖的硬件及背景 二、设计目的 三、建立工程 1、配置GPIO 2、选择时钟源和Debug 3、配置ADC 4、配置系统时钟和ADC时钟 5、配置TIM3 6、配置串口 四、代码修改 1、重定义TIM3中断回调函数 2、启动ADC及重写其回调函数 3、定义用于存储转换结果的数…

30斤用什么快递便宜?大件物品怎么寄划算省钱?

大学生小李最近因为毕业要搬家&#xff0c;不得不把一堆书籍、衣服和一些生活用品寄回家。作为一个精打细算的“穷学生”&#xff0c;小李可是不愿意在快递费上花冤枉钱的。于是&#xff0c;他开始研究各种寄快递省钱的方法&#xff0c;今天我们就来看看小李是怎么操作的。一、…

【Python画图-seaborn驯化】一文学会seaborn画散点图scatterplot、swarmplot技巧

【Python画图-seaborn驯化】一文学会seaborn画散点图scatterplot、swarmplot 本次修炼方法请往下查看 &#x1f308; 欢迎莅临我的个人主页 &#x1f448;这里是我工作、学习、实践 IT领域、真诚分享 踩坑集合&#xff0c;智慧小天地&#xff01; &#x1f387; 免费获取相关内…

用免费的可视化工具制作3D智慧城市大屏,融合数字孪生,引领数据升级

在如今数据驱动的时代&#xff0c;越来越多的场景中都有可视化大屏的身影&#xff0c;许多企业和政府部门也从常规的二维看板渐渐地转向更加炫酷&#xff0c;立体的3D可视化大屏。3D可视化大屏成为了展示复杂数据、实时监控业务动态的重要工具。本文将详细介绍如何使用免费的数…

基于Springboot的智慧养老中心管理系统

文章目录 项目介绍主要功能截图:部分代码展示设计总结项目获取方式🍅 作者主页:超级无敌暴龙战士塔塔开 🍅 简介:Java领域优质创作者🏆、 简历模板、学习资料、面试题库【关注我,都给你】 🍅文末获取源码联系🍅 项目介绍 基于Springboot的智慧养老中心管理系统,…

Appium+python自动化(四十一)-Appium自动化测试框架综合实践 - 即将落下帷幕(超详解)

1.简介 今天我们紧接着上一篇继续分享Appium自动化测试框架综合实践 - 代码实现。到今天为止&#xff0c;大功即将告成&#xff1b;框架所需要的代码实现都基本完成。 2.data数据封装 2.1使用背景 在实际项目过程中&#xff0c;我们的数据可能是存储在一个数据文件中&#x…

RRStudio 下载及安装(详尽版)

R语言来自S语言&#xff0c;是S语言的一个变种。S语言、C语言、Unix系统都是贝尔实验室的研究成果。R 语言是一种解释型的面向数学理论研究工作者的语言&#xff0c;主要用于统计分析、绘图、数据挖掘。 R 语言自由软件&#xff0c;免费、开放源代码&#xff0c;支持各个主要计…

NLP入门——前馈词袋分类模型的搭建、训练与预测

模型的搭建 线性层 >>> import torch >>> from torch import nn >>> class DBG(nn.Module): ... def forward(self,x): ... print(x.size()) ... return x ... >>> tmod nn.Sequential(nn.Linear(3,4),DB…

面试-微服务篇

springcloud组件有哪些&#xff1f; eureka、ribbon负载均衡、feign、hystrix、zuul/gateway网关 nacos、ribbon、feign、sentinel、gateway 服务注册和发现是什么意思&#xff1f;springcloud如何实现服务注册发现&#xff1f; 微服务中必须要使用的组件&#xff0c;考察我们使…

【React】Ant Design -- Table分页功能实现

实现步骤 为Table组件指定pagination属性来展示分页效果在分页切换事件中获取到筛选表单中选中的数据使用当前页数据修改params参数依赖引起接口重新调用获取最新数据 const pageChange (page) > {// 拿到当前页参数 修改params 引起接口更新setParams({...params,page})…

【数据清洗中分段线性插值法原理】

数据清洗中分段线性插值法原理 一、什么是分段线性插值法&#xff1f;二、分段线性插值法的数学原理三、分段线性插值法的应用步骤1. 引入库2. 创建示例数据3. 应用分段线性插值法4. 可视化插值结果 一、什么是分段线性插值法&#xff1f; 分段线性插值法通过在已知数据点之间…

己内酰胺纯化除杂的最佳工艺

己内酰胺纯化除杂的最佳工艺包括结晶法、离子交换树脂法、精馏法和萃取法等&#xff0c;每种方法都有其特定的应用场景和优缺点。以下是对这些方法的详细介绍&#xff1a; 最佳工艺介绍 ● 结晶法&#xff1a;通过调节pH值&#xff0c;使己内酰胺在特定条件下结晶&#xff0…

CEPH 系统盘挂了,如何使用数据盘恢复

硬盘损坏是早晚的时&#xff0c;CEHP数据盘坏了&#xff0c;使用CEPH的基本都轻车熟路了&#xff0c;如果系统盘坏了呢&#xff1f;不知道的可能会采取整个系统盘全做的方式 前提条件&#xff1a;使用cephadm搭建集群 如果换服务器&#xff0c;请确保CEPH数据盘放到其它服务器上…

油猴Safari浏览器插件:Tampermonkey for Mac 下载

Tampermonkey 是一个强大的浏览器扩展&#xff0c;用于运行用户脚本&#xff0c;这些脚本可以自定义和增强网页的功能。它允许用户在网页上执行各种自动化任务&#xff0c;比如自动填写表单、移除广告、改变页面布局等。适用浏览器&#xff1a; Tampermonkey 适用于多数主流浏览…

【数智化人物展】数势科技创始人兼CEO黎科峰:数智化时代To B软件行业面临颠覆与重塑...

黎科峰 本文由数势科技创始人兼CEO黎科峰投递并参与由数据猿联合上海大数据联盟共同推出的《2024中国数智化转型升级先锋人物》榜单/奖项评选。 大数据产业创新服务媒体 ——聚焦数据 改变商业 2020年&#xff0c;对我而言&#xff0c;是职业生涯中的一个重大转折点。在全球新…

手机如何充当电脑摄像头,新手使用教程分享(新)

手机如何充当电脑摄像头&#xff1f;随着科技的发展&#xff0c;智能手机已经成为我们日常生活中不可或缺的一部分。手机的摄像头除了拍摄记录美好瞬间之外&#xff0c;其实还有个妙用&#xff0c;那就是充当电脑的摄像头。手机摄像头充当电脑摄像头使用的话&#xff0c;我们就…

FPGA基本资源介绍

文章目录 FPGA资源介绍1.可编程输入输出单元(IOB)2.可配置逻辑块(CLB)3.数字时钟管理模块(DCM)4.嵌入式块RAM(BLOCK RAM / BRAM)4.1其他ram 5.丰富的布线资源6.底层内嵌功能单元7.内嵌专用硬核软核、硬核、以及固核的概念 FPGA资源介绍 1.可编程输入输出单元(IOB) 可编程输入…