(十三)MipMap

news2025/1/19 2:59:55

MipMap概念

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

滤波

在这里插入图片描述

采样

在这里插入图片描述
在这里插入图片描述

mipmap级别判定

问题:opengl如何判定应该使用下一级的mipmap呢?
通过glsl中的求偏导函数计算变化量决定
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

手动实现mipmap原理

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
1、生成mipmap的各个级别
2、修改vertexShader使得三角形随着时间变小
**** 需要更改Filter才能够在变小的时候使用mipmap *****

#include <glad/glad.h>//glad必须在glfw头文件之前包含
#include <GLFW/glfw3.h>
#include <iostream>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
void frameBufferSizeCallbakc(GLFWwindow* window, int width, int height)
{
	glViewport(0, 0, width, height);
}
void glfwKeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
}

GLuint program = 0;
GLuint vao = 0;
void prepareVAO()
{
	//positions
	float positions[] = {
		-0.5f, -0.5f, 0.0f,
		0.5f, -0.5f, 0.0f,
		0.0f,  0.5f, 0.0f,
	};
	//颜色
	float colors[] = {
		1.0f, 0.0f,0.0f,
		0.0f, 1.0f,0.0f,
		0.0f, 0.0f,1.0f,
	};
	//索引
	unsigned int indices[] = {
		0, 1, 2,
	};
	//uv坐标
	float uvs[] = {
		0.0f, 0.0f,
		1.0f, 0.0f,
		0.5f, 1.0f,
	};

	//2 VBO创建
	GLuint posVbo = 0;
	GLuint colorVbo = 0;
	GLuint uvVbo = 0;
	glGenBuffers(1, &posVbo);
	glBindBuffer(GL_ARRAY_BUFFER, posVbo);
	glBufferData(GL_ARRAY_BUFFER, sizeof(positions), positions, GL_STATIC_DRAW);

	glGenBuffers(1, &colorVbo);
	glBindBuffer(GL_ARRAY_BUFFER, colorVbo);
	glBufferData(GL_ARRAY_BUFFER, sizeof(colors), colors, GL_STATIC_DRAW);

	glGenBuffers(1, &uvVbo);
	glBindBuffer(GL_ARRAY_BUFFER, uvVbo);
	glBufferData(GL_ARRAY_BUFFER, sizeof(uvs), uvs, GL_STATIC_DRAW);

	//3 EBO创建
	GLuint ebo = 0;
	glGenBuffers(1, &ebo);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

	//4 VAO创建
	vao = 0;
	glGenVertexArrays(1, &vao);
	glBindVertexArray(vao);

	//5 绑定vbo ebo 加入属性描述信息
	//5.1 加入位置属性描述信息
	glBindBuffer(GL_ARRAY_BUFFER, posVbo);
	glEnableVertexAttribArray(0);
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);

	//5.2 加入颜色属性描述信息
	glBindBuffer(GL_ARRAY_BUFFER, colorVbo);
	glEnableVertexAttribArray(1);
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);

	//5.3 加入uv属性描述数据
	glBindBuffer(GL_ARRAY_BUFFER, uvVbo);
	glEnableVertexAttribArray(2);
	glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), (void*)0);

	//5.2 加入ebo到当前的vao
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);

	glBindVertexArray(0);
}
void prepareShader() {
	//1 完成vs与fs的源代码,并且装入字符串
	const char* vertexShaderSource =
		"#version 330 core\n"
		"layout (location = 0) in vec3 aPos;\n"
		"layout (location = 1) in vec3 aColor;\n"
		"layout (location = 2) in vec2 aUV;\n"
		"out vec3 color;\n"
		"out vec2 uv;\n"
		"uniform float time;\n"
		"void main()\n"
		"{\n"
		"   float scale = 1.0/time;\n"
		"   vec3 sPos = aPos * scale;\n"
		"   gl_Position = vec4(sPos, 1.0);\n"
		"   color = aColor;\n"
		"   uv = aUV;\n"
		"}\0";
	const char* fragmentShaderSource =
		"#version 330 core\n"
		"out vec4 FragColor;\n"
		"in vec3 color;\n"
		"in vec2 uv;\n"
		"uniform sampler2D sampler;\n"
		"void main()\n"
		"{\n"
		"  FragColor = texture(sampler, uv);\n"
		"}\n\0";


	//2 创建Shader程序(vs、fs)
	GLuint vertex, fragment;
	vertex = glCreateShader(GL_VERTEX_SHADER);
	fragment = glCreateShader(GL_FRAGMENT_SHADER);


	//3 为shader程序输入shader代码
	glShaderSource(vertex, 1, &vertexShaderSource, NULL);
	glShaderSource(fragment, 1, &fragmentShaderSource, NULL);

	int success = 0;
	char infoLog[1024];
	//4 执行shader代码编译 
	glCompileShader(vertex);
	//检查vertex编译结果
	glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
	if (!success) {
		glGetShaderInfoLog(vertex, 1024, NULL, infoLog);
		std::cout << "Error: SHADER COMPILE ERROR --VERTEX" << "\n" << infoLog << std::endl;
	}

	glCompileShader(fragment);
	//检查fragment编译结果
	glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
	if (!success) {
		glGetShaderInfoLog(fragment, 1024, NULL, infoLog);
		std::cout << "Error: SHADER COMPILE ERROR --FRAGMENT" << "\n" << infoLog << std::endl;
	}

	//5 创建一个Program壳子
	program = glCreateProgram();

	//6 将vs与fs编译好的结果放到program这个壳子里
	glAttachShader(program, vertex);
	glAttachShader(program, fragment);

	//7 执行program的链接操作,形成最终可执行shader程序
	glLinkProgram(program);

	//检查链接错误
	glGetProgramiv(program, GL_LINK_STATUS, &success);
	if (!success) {
		glGetProgramInfoLog(program, 1024, NULL, infoLog);
		std::cout << "Error: SHADER LINK ERROR " << "\n" << infoLog << std::endl;
	}

	//清理
	glDeleteShader(vertex);
	glDeleteShader(fragment);
}
GLuint genTexture(const char* picPath, int unitTexturt)
{
	//1 stbImage 读取图片
	int width, height, channels;
	//--反转y轴
	stbi_set_flip_vertically_on_load(true);
	unsigned char* data = stbi_load(picPath, &width, &height, &channels, STBI_rgb_alpha);

	//2 生成纹理并且激活单元绑定
	GLuint texture = 0;
	glGenTextures(1, &texture);
	//--激活纹理单元--
	glActiveTexture(GL_TEXTURE0 + unitTexturt);
	//--绑定纹理对象--
	glBindTexture(GL_TEXTURE_2D, texture);

	int tmepWidth = width, tempHeight = height;
	//3 传输纹理数据,开辟显存
	//glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
	//遍历每个mipmap的层级,为每个级别的mipmap填充图片数据
	for (int level = 0; true; ++level)
	{
		//1 将当前级别的mipmap对应的数据发往gpu端
		glTexImage2D(GL_TEXTURE_2D, level, GL_RGBA, tmepWidth, tempHeight, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);
		//2 判断是否退出循环
		if (tmepWidth == 1 && tempHeight == 1)
			break;
		//3 计算下一次循环的宽度/高度,除以2
		tmepWidth = tmepWidth > 1 ? tmepWidth / 2 : 1;
		tempHeight = tempHeight > 1 ? tempHeight / 2 : 1;
	}

	//***释放数据
	stbi_image_free(data);

	//4 设置纹理的过滤方式
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	//*****重要*****//
	//GL_NEAREST:在单个mipmap上采用最邻近采样
	//GL_LINEAR   
	//MIPMAP_LINEAR:在两层mipmap之间采用线性插值
	//MIPMAP_NEAREST
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_LINEAR);

	//5 设置纹理的包裹方式
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);//u
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);//v

	return texture;
}
void prepareTextrue()
{
	//GLuint grassTexture = genTexture("grass.jpg", 0);
	//GLuint landTexture = genTexture("land.jpg", 1);
	//GLuint noiseTexture = genTexture("noise.jpg", 2);
	GLuint wallTexture = genTexture("goku.jpg", 0);
}

void render()
{
	//执行opengl画布清理操作
	glClear(GL_COLOR_BUFFER_BIT);

	//1.绑定当前的program
	glUseProgram(program);

	//2 更新Uniform的时候,一定要先UserProgram
	//2.1 通过名称拿到Uniform变量的位置Location
	//2.2 通过Location更新Uniform变量的值
	GLint time = glGetUniformLocation(program, "time");
	int i = glfwGetTime();
	glUniform1f(time, glfwGetTime());
	GLint sampler = glGetUniformLocation(program, "sampler");
	glUniform1i(sampler, 0);
	

	//3 绑定当前的vao
	glBindVertexArray(vao);
	//4 发出绘制指令
	//glDrawArrays(GL_TRIANGLE_STRIP, 0, 6);
	glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, 0);
}


int main()
{
	//初始化glfw环境
	glfwInit();
	//设置opengl主版本号
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	//设置opengl次版本号
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	//设置opengl启用核心模式
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

	//创建窗体对象
	GLFWwindow* window = glfwCreateWindow(800, 600, "lenarnOpenGL", nullptr, nullptr);
	//设置当前窗体对象为opengl的绘制舞台
	glfwMakeContextCurrent(window);
	//窗体大小回调
	glfwSetFramebufferSizeCallback(window, frameBufferSizeCallbakc);
	//键盘相应回调
	glfwSetKeyCallback(window, glfwKeyCallback);

	//使用glad加载所有当前版本opengl的函数
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
	{
		std::cout << "初始化glad失败" << std::endl;
		return -1;
	}
	;
	//设置opengl视口大小和清理颜色
	glViewport(0, 0, 800, 600);
	glClearColor(0.2f, 0.3f, 0.3f, 1.0f);

	//shader
	prepareShader();
	//vao
	prepareVAO();
	//texture
	prepareTextrue();

	//执行窗体循环
	while (!glfwWindowShouldClose(window))
	{
		//接受并分发窗体消息
		//检查消息队列是否有需要处理的鼠标、键盘等消息
		//如果有的话就将消息批量处理,清空队列
		glfwPollEvents();
		//渲染操作
		render();
		//切换双缓存
		glfwSwapBuffers(window);
	}

	//推出程序前做相关清理
	glfwTerminate();
	return 0;
}

上述代码即可实现随着时间的变化,不同层级的图片贴到三角形中的效果。
还可以不在代码中设置层级间的采样方式 即注释掉

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_LINEAR);

在fs中,实现根据像素对应图素的数量多少,决定采样哪个层级的mipmap

#version 330 core
out vec4 FragColor;
in vec3 color;
in vec2 uv;
uniform sampler2D sampler;
uniform float width;
uniform float height;
void main()
{
  //FragColor = texture(sampler, uv);

  //1 获取当前像素对应的纹理上的纹素具体位置
  vec2 location = uv * vec2(width, height);

  //2 计算当前像素对应纹素具体位置在xy方向上的变化量
  vec2 dx = dFdx(location);
  vec2 dy = dFdy(location);

  //3 选择最大的delta,求log2(delta)
  float maxDelta = sqrt(max(dot(dx, dx), dot(dy,dy)));
  float L = log2(maxDelta);

  //4 计算出mipmap的采样级别
  int level = max(int(L + 0.5), 0);

  FragColor = textureLod(sampler, uv, level);
}

fs的glsl设置以上字符串,渲染时设置图片的宽度和高度即可达到同样的效果。

opengl自动生成mipmap

在这里插入图片描述

#include <glad/glad.h>//glad必须在glfw头文件之前包含
#include <GLFW/glfw3.h>
#include <iostream>
#define STB_IMAGE_IMPLEMENTATION
#include "stb_image.h"
void frameBufferSizeCallbakc(GLFWwindow* window, int width, int height)
{
	glViewport(0, 0, width, height);
}
void glfwKeyCallback(GLFWwindow* window, int key, int scancode, int action, int mods)
{
}

GLuint program = 0;
GLuint vao = 0;
void prepareVAO()
{
	//positions
	float positions[] = {
		-0.5f, -0.5f, 0.0f,
		0.5f, -0.5f, 0.0f,
		0.0f,  0.5f, 0.0f,
	};
	//颜色
	float colors[] = {
		1.0f, 0.0f,0.0f,
		0.0f, 1.0f,0.0f,
		0.0f, 0.0f,1.0f,
	};
	//索引
	unsigned int indices[] = {
		0, 1, 2,
	};
	//uv坐标
	float uvs[] = {
		0.0f, 0.0f,
		1.0f, 0.0f,
		0.5f, 1.0f,
	};

	//2 VBO创建
	GLuint posVbo = 0;
	GLuint colorVbo = 0;
	GLuint uvVbo = 0;
	glGenBuffers(1, &posVbo);
	glBindBuffer(GL_ARRAY_BUFFER, posVbo);
	glBufferData(GL_ARRAY_BUFFER, sizeof(positions), positions, GL_STATIC_DRAW);

	glGenBuffers(1, &colorVbo);
	glBindBuffer(GL_ARRAY_BUFFER, colorVbo);
	glBufferData(GL_ARRAY_BUFFER, sizeof(colors), colors, GL_STATIC_DRAW);

	glGenBuffers(1, &uvVbo);
	glBindBuffer(GL_ARRAY_BUFFER, uvVbo);
	glBufferData(GL_ARRAY_BUFFER, sizeof(uvs), uvs, GL_STATIC_DRAW);

	//3 EBO创建
	GLuint ebo = 0;
	glGenBuffers(1, &ebo);
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);
	glBufferData(GL_ELEMENT_ARRAY_BUFFER, sizeof(indices), indices, GL_STATIC_DRAW);

	//4 VAO创建
	vao = 0;
	glGenVertexArrays(1, &vao);
	glBindVertexArray(vao);

	//5 绑定vbo ebo 加入属性描述信息
	//5.1 加入位置属性描述信息
	glBindBuffer(GL_ARRAY_BUFFER, posVbo);
	glEnableVertexAttribArray(0);
	glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);

	//5.2 加入颜色属性描述信息
	glBindBuffer(GL_ARRAY_BUFFER, colorVbo);
	glEnableVertexAttribArray(1);
	glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, 3 * sizeof(float), (void*)0);

	//5.3 加入uv属性描述数据
	glBindBuffer(GL_ARRAY_BUFFER, uvVbo);
	glEnableVertexAttribArray(2);
	glVertexAttribPointer(2, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), (void*)0);

	//5.2 加入ebo到当前的vao
	glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, ebo);

	glBindVertexArray(0);
}
void prepareShader() {
	//1 完成vs与fs的源代码,并且装入字符串
	const char* vertexShaderSource =
		"#version 330 core\n"
		"layout (location = 0) in vec3 aPos;\n"
		"layout (location = 1) in vec3 aColor;\n"
		"layout (location = 2) in vec2 aUV;\n"
		"out vec3 color;\n"
		"out vec2 uv;\n"
		"uniform float time;\n"
		"void main()\n"
		"{\n"
		"   float scale = 1.0/time;\n"
		"   vec3 sPos = aPos * scale;\n"
		"   gl_Position = vec4(sPos, 1.0);\n"
		"   color = aColor;\n"
		"   uv = aUV;\n"
		"}\0";
	const char* fragmentShaderSource =
		"#version 330 core\n"
		"out vec4 FragColor;\n"
		"in vec3 color;\n"
		"in vec2 uv;\n"
		"uniform sampler2D sampler;\n"
		"void main()\n"
		"{\n"
		"  FragColor = texture(sampler, uv);\n"
		"}\n\0";


	//2 创建Shader程序(vs、fs)
	GLuint vertex, fragment;
	vertex = glCreateShader(GL_VERTEX_SHADER);
	fragment = glCreateShader(GL_FRAGMENT_SHADER);


	//3 为shader程序输入shader代码
	glShaderSource(vertex, 1, &vertexShaderSource, NULL);
	glShaderSource(fragment, 1, &fragmentShaderSource, NULL);

	int success = 0;
	char infoLog[1024];
	//4 执行shader代码编译 
	glCompileShader(vertex);
	//检查vertex编译结果
	glGetShaderiv(vertex, GL_COMPILE_STATUS, &success);
	if (!success) {
		glGetShaderInfoLog(vertex, 1024, NULL, infoLog);
		std::cout << "Error: SHADER COMPILE ERROR --VERTEX" << "\n" << infoLog << std::endl;
	}

	glCompileShader(fragment);
	//检查fragment编译结果
	glGetShaderiv(fragment, GL_COMPILE_STATUS, &success);
	if (!success) {
		glGetShaderInfoLog(fragment, 1024, NULL, infoLog);
		std::cout << "Error: SHADER COMPILE ERROR --FRAGMENT" << "\n" << infoLog << std::endl;
	}

	//5 创建一个Program壳子
	program = glCreateProgram();

	//6 将vs与fs编译好的结果放到program这个壳子里
	glAttachShader(program, vertex);
	glAttachShader(program, fragment);

	//7 执行program的链接操作,形成最终可执行shader程序
	glLinkProgram(program);

	//检查链接错误
	glGetProgramiv(program, GL_LINK_STATUS, &success);
	if (!success) {
		glGetProgramInfoLog(program, 1024, NULL, infoLog);
		std::cout << "Error: SHADER LINK ERROR " << "\n" << infoLog << std::endl;
	}

	//清理
	glDeleteShader(vertex);
	glDeleteShader(fragment);
}
GLuint genTexture(const char* picPath, int unitTexturt)
{
	//1 stbImage 读取图片
	int width, height, channels;
	//--反转y轴
	stbi_set_flip_vertically_on_load(true);
	unsigned char* data = stbi_load(picPath, &width, &height, &channels, STBI_rgb_alpha);

	//2 生成纹理并且激活单元绑定
	GLuint texture = 0;
	glGenTextures(1, &texture);
	//--激活纹理单元--
	glActiveTexture(GL_TEXTURE0 + unitTexturt);
	//--绑定纹理对象--
	glBindTexture(GL_TEXTURE_2D, texture);
	
	//3 传输纹理数据,开辟显存
	glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, width, height, 0, GL_RGBA, GL_UNSIGNED_BYTE, data);

	//为当前纹理对象生成mipmap
	glGenerateMipmap(GL_TEXTURE_2D);

	//***释放数据
	stbi_image_free(data);

	//4 设置纹理的过滤方式
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
	//*****重要*****//
	//GL_NEAREST:在单个mipmap上采用最邻近采样
	//GL_LINEAR   
	//MIPMAP_LINEAR:在两层mipmap之间采用线性插值
	//MIPMAP_NEAREST
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_LINEAR);

	//5 设置纹理的包裹方式
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);//u
	glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);//v

	return texture;
}
void prepareTextrue()
{
	//GLuint grassTexture = genTexture("grass.jpg", 0);
	//GLuint landTexture = genTexture("land.jpg", 1);
	//GLuint noiseTexture = genTexture("noise.jpg", 2);
	GLuint wallTexture = genTexture("goku.jpg", 0);
}

void render()
{
	//执行opengl画布清理操作
	glClear(GL_COLOR_BUFFER_BIT);

	//1.绑定当前的program
	glUseProgram(program);

	//2 更新Uniform的时候,一定要先UserProgram
	//2.1 通过名称拿到Uniform变量的位置Location
	//2.2 通过Location更新Uniform变量的值
	GLint time = glGetUniformLocation(program, "time");
	int i = glfwGetTime();
	glUniform1f(time, glfwGetTime());
	GLint sampler = glGetUniformLocation(program, "sampler");
	glUniform1i(sampler, 0);

	//3 绑定当前的vao
	glBindVertexArray(vao);
	//4 发出绘制指令
	//glDrawArrays(GL_TRIANGLE_STRIP, 0, 6);
	glDrawElements(GL_TRIANGLES, 3, GL_UNSIGNED_INT, 0);
}


int main()
{
	//初始化glfw环境
	glfwInit();
	//设置opengl主版本号
	glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
	//设置opengl次版本号
	glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
	//设置opengl启用核心模式
	glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);

	//创建窗体对象
	GLFWwindow* window = glfwCreateWindow(800, 600, "lenarnOpenGL", nullptr, nullptr);
	//设置当前窗体对象为opengl的绘制舞台
	glfwMakeContextCurrent(window);
	//窗体大小回调
	glfwSetFramebufferSizeCallback(window, frameBufferSizeCallbakc);
	//键盘相应回调
	glfwSetKeyCallback(window, glfwKeyCallback);

	//使用glad加载所有当前版本opengl的函数
	if (!gladLoadGLLoader((GLADloadproc)glfwGetProcAddress))
	{
		std::cout << "初始化glad失败" << std::endl;
		return -1;
	}
	;
	//设置opengl视口大小和清理颜色
	glViewport(0, 0, 800, 600);
	glClearColor(0.2f, 0.3f, 0.3f, 1.0f);

	//shader
	prepareShader();
	//vao
	prepareVAO();
	//texture
	prepareTextrue();

	//执行窗体循环
	while (!glfwWindowShouldClose(window))
	{
		//接受并分发窗体消息
		//检查消息队列是否有需要处理的鼠标、键盘等消息
		//如果有的话就将消息批量处理,清空队列
		glfwPollEvents();
		//渲染操作
		render();
		//切换双缓存
		glfwSwapBuffers(window);
	}

	//推出程序前做相关清理
	glfwTerminate();
	return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1894752.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

如何在操作使用ufw设置防火墙

UFW&#xff08;简单防火墙&#xff09;是用于管理iptables防火墙规则的用户友好型前端。它的主要目标是使iptables的管理更容易。 在学习Linux的时候大家一般都会关心命令&#xff0c;Posix API和桌面等&#xff0c;很少会去了解防护墙。其实除了一些网络安全厂商提供的付费防…

Zabbix 配置MySQL数据库监控

Zabbix MySQL数据库监控简介 通过 Zabbix 监控 MySQL 数据库&#xff0c;可以获取有关数据库性能、运行状况和资源使用情况的详细信息&#xff0c;帮助及时发现和解决问题。 Zabbix官方提供了一个名为MySQL by Zabbix agent的监控模板&#xff0c;该模板专为 Zabbix 通过 Zabb…

波动方程 - 在三维图中动态显示二维波动方程的解就像水面波澜起伏

波动方程 - 在三维图中动态显示二维波动方程的解就像水面波澜起伏 flyfish 波动方程的求解结果通常不是一个单一的数值&#xff0c;而是一个函数或一组函数&#xff0c;这些函数描述了波随时间和空间的传播情况。具体来说&#xff0c;波动方程的解可以是关于时间和空间变量的…

技术驱动旅游创新!深度解析景区导览小程序的地图渲染与AR导航技术

随着现代生活节奏的加快&#xff0c;人们在外出旅游时更倾向于轻便出行&#xff0c;携带导览地图已成为过去。然而&#xff0c;面对景区广阔的面积和众多景点&#xff0c;游客常常感到迷茫&#xff0c;难以快速定位到自己所需的地点。景区导览小程序让游客只需搜索景区名称&…

PyQT: 开发一款ROI绘制小程序

在一些基于图像或者视频流的应用中&#xff0c;比如电子围栏/客流统计等&#xff0c;我们需要手动绘制一些感兴趣&#xff08;Region of Interest&#xff0c;简称ROI&#xff09;区域。 在这里&#xff0c;我们基于Python和PyQt5框架开发了一款桌面应用程序&#xff0c;允许用…

谷粒商城学习笔记-05-项目微服务划分图

文章目录 一&#xff0c;商城业务服务-前端服务二&#xff0c;商城业务服务-后端服务三&#xff0c;存储服务四&#xff0c;第三方服务五&#xff0c;服务治理六&#xff0c;日志七&#xff0c;监控预警系统1&#xff0c;Prometheus2&#xff0c;Grafana3&#xff0c;Prometheu…

TSINGSEE智能分析网关V4人员区域徘徊AI检测:算法原理介绍及技术应用场景

一、引言 在现代社会&#xff0c;随着科技的不断发展&#xff0c;视频监控系统已广泛应用于各个领域&#xff0c;如公共安全、商业管理、交通监控等。其中&#xff0c;区域徘徊检测算法作为一种重要的视频分析技术&#xff0c;能够有效地识别出特定区域内人员的徘徊行为&#…

LLMs之gpt_academic:gpt_academic的简介、安装和使用方法、案例应用之详细攻略

LLMs之gpt_academic&#xff1a;gpt_academic的简介、安装和使用方法、案例应用之详细攻略 目录 gpt_academic的简介 1、版本更新历史 版本: 1、新增功能及其描述 新界面&#xff08;修改config.py中的LAYOUT选项即可实现“左右布局”和“上下布局”的切换&#xff09; 所…

SpringBoot开发细节

1.✨前后端时间不一致 解决方法1&#xff1a;在实体类属性上添加 JsonFormat(pattern "yyyy-MM-dd HH:mm:ss", timezone "GMT8")解决方法2&#xff1a;springboot配置文件中 spring:jackson:date-format: yyyy-MM-dd HH:mm:sstime-zone: GMT82.定义返回…

电商数据仓库

1.数据仓库的数据来源为业务数据库&#xff08;mysql&#xff09; 2.通过sqoop将mysql中的业务数据导入到大数据平台&#xff08;hive&#xff09; 3.通过hive进行数据计算和数据分析 形成数据报表 4.再通过sqoop将数据报表导出到mysql 5.使用FineReport制作数据报表 1.数据…

开始尝试从0写一个项目--后端(一)

创建文件的目录结构 利用这个界面创建 序号 名称 说明 1 SEMS maven父工程&#xff0c;统一管理依赖版本&#xff0c;聚合其他子模块 2 sems-common 子模块&#xff0c;存放公共类&#xff0c;例如&#xff1a;工具类、常量类、异常类等 3 sems-pojo 子模块&#x…

前端Debugger时复制的JS对象字符转JSON对象

前端debugger时&#xff0c;复制的对象在控制台输出时是如下格式&#xff0c;需要转换为对象格式来进行验证操作 bridgeId : 4118 createBy : null createTime : "2023-03-24 10:35:26" createUserId : 1 具体实现代码&#xff1a; // 转换transform (text) {l…

数据库表导出到excel:前置知识3 项目封装的Quartz实现动态定时任务

参考网址 目标&#xff1a;定时任务持久化到数据库&#xff0c;动态调整数据库里保存的cron表达式使定时任务可以跟随变化。 从SYS_QUARTZ_JOB表(通过反射创建任务)和SYS_QUARTZ_LOG表(主要就是记录日志)构建两个对应的实体类&#xff1a;QuartzJob和QuartzLog 1.看表结构 …

云计算【第一阶段(26)】Linux网络设置

一、查看网络配置 1.查看网络接口信息ifconfig 查看所有活动的网络接口信息 2.ifconfig命令 查看指定网络接口信息 ifconfig 网络接口 &#xff08;1&#xff09;第一行&#xff1a;以太网卡的名字 ens33其中en代表以太网卡&#xff0c; centos6的是eth0&#xff0c; e…

什么是数字体验成熟度,以及数字成熟度的模型计算和实现方法

“开发成功的全渠道数字身份&#xff0c;并通过无缝的数字体验吸引广泛的受众。无论您身在何处&#xff0c;都可以加速数字化转型并促进业务增长。通过直观、全面的工具&#xff0c;并了解您个人的数字体验成熟度水平&#xff0c;超越不断增长的客户期望并超越竞争对手。今天就…

第二十条:与抽象类相比,优先选择接口

要定义多种实现的类型&#xff1a;JAVA有两种机制&#xff1a;接口和抽象类。这两种机制都支持为某些实例方法提供实现&#xff0c;但二者有个重要的区别&#xff1a;要实现由抽象类定义的类型&#xff0c;这个类必须是抽象类的子类。因为Java只允许单继承&#xff0c;对抽象类…

2025年中国国际新能源汽车技术零部件及服务展览会

中国国际新能源汽车技术零部件及服务展览会&#xff0c;从设计到制造、从使用到服务&#xff0c;精准“链”接新能源汽车全产业链的技术供应商和汽车制造商&#xff0c;专业面向新能源造车供应链的行业盛会。2024展会回顾&#xff1a;在展会的3天里&#xff0c;有62家车企核心供…

如何自动筛选螺丝不良品?

四角螺丝是一种特殊设计的螺丝&#xff0c;其螺纹头部呈四个平行的角状结构&#xff0c;与传统的六角螺丝相比具有独特的外观和功能。这种设计使得四角螺丝在安装和拆卸时更容易使用&#xff0c;并提供了更好的扭矩传递效率。四角螺丝头部呈现四个平行的角&#xff0c;与常见的…

Web前端开发——HTML快速入门

HTML&#xff1a;控制网页的结构CSS&#xff1a;控制网页的表现 一、什么是HTML、CSS &#xff08;1&#xff09;HTML &#xff08;HyperText Markup Languaqe&#xff1a;超文本标记语言&#xff09; 超文本&#xff1a;超越了文本的限制&#xff0c;比普通文本更强大。除了…

上海计算机考研炸了,这所学校慎报!上海大学计算机考研考情分析!

上海大学&#xff08;Shanghai University&#xff09;&#xff0c;简称“上大”&#xff0c;是上海市属、国家“211工程”重点建设的综合性大学&#xff0c;教育部与上海市人民政府共建高校&#xff0c;国防科技工业局与上海市人民政府共建高校&#xff0c;国家“双一流”世界…