【机器学习】机器学习与图像识别的融合应用与性能优化新探索

news2024/11/25 2:28:46

在这里插入图片描述
在这里插入图片描述

文章目录

    • 引言
    • 第一章:机器学习在图像识别中的应用
      • 1.1 数据预处理
        • 1.1.1 数据清洗
        • 1.1.2 数据归一化
        • 1.1.3 数据增强
      • 1.2 模型选择
        • 1.2.1 卷积神经网络
        • 1.2.2 迁移学习
        • 1.2.3 混合模型
      • 1.3 模型训练
        • 1.3.1 梯度下降
        • 1.3.2 随机梯度下降
        • 1.3.3 Adam优化器
      • 1.4 模型评估与性能优化
        • 1.4.1 模型评估指标
        • 1.4.2 超参数调优
        • 1.4.3 增加数据量
        • 1.4.4 模型集成
    • 第二章:图像识别的具体案例分析
      • 2.1 手写数字识别
        • 2.1.1 数据预处理
        • 2.1.2 模型选择与训练
        • 2.1.3 模型评估与优化
      • 2.2 图像分类
        • 2.2.1 数据预处理
        • 2.2.2 模型选择与训练
        • 2.2.3 模型评估与优化
    • 第三章:性能优化与前沿研究
      • 3.1 性能优化
        • 3.1.1 特征工程
        • 3.
        • 3.1.3 模型集成
      • 3.2 前沿研究
        • 3.2.1 深度学习在图像识别中的应用
        • 3.2.2 强化学习在图像识别中的应用
        • 3.2.3 联邦学习与隐私保护
    • 结语

引言

图像识别是计算机视觉领域的一项重要任务,通过分析和理解图像中的内容,使计算机能够自动识别和分类物体、场景和行为。随着深度学习技术的发展,机器学习在图像识别中的应用越来越广泛,推动了自动驾驶、医疗诊断、智能监控等领域的发展。本文将详细介绍机器学习在图像识别中的应用,包括数据预处理、模型选择、模型训练和性能优化。通过具体的案例分析,展示机器学习技术在图像识别中的实际应用,并提供相应的代码示例。
在这里插入图片描述

第一章:机器学习在图像识别中的应用

1.1 数据预处理

在图像识别应用中,数据预处理是机器学习模型成功的关键步骤。图像数据通常具有高维度和复杂性,需要进行清洗、归一化和数据增强等处理。

1.1.1 数据清洗

数据清洗包括去除噪声、裁剪图像和调整图像大小等操作。

import cv2
import numpy as np

# 加载图像
image = cv2.imread('image.jpg')

# 转换为灰度图像
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# 去除噪声
denoised_image = cv2.GaussianBlur(gray_image, (5, 5), 0)

# 裁剪图像
cropped_image = denoised_image[50:200, 50:200]

# 调整图像大小
resized_image = cv2.resize(cropped_image, (128, 128))
1.1.2 数据归一化

数据归一化可以消除不同图像之间的亮度和对比度差异,使模型更容易学习。

# 归一化图像
normalized_image = resized_image / 255.0
1.1.3 数据增强

数据增强通过对训练图像进行随机变换,如旋转、平移、翻转等,增加数据的多样性,提高模型的泛化能力。

from keras.preprocessing.image import ImageDataGenerator

# 创建数据增强生成器
datagen = ImageDataGenerator(
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True
)

# 生成增强图像
augmented_images = datagen.flow(np.expand_dims(normalized_image, axis=0), batch_size=1)

1.2 模型选择

在图像识别中,常用的机器学习模型包括卷积神经网络(CNN)、迁移学习模型和混合模型等。不同模型适用于不同的任务和数据特征,需要根据具体应用场景进行选择。

1.2.1 卷积神经网络

卷积神经网络(CNN)是图像识别领域的基础模型,通过卷积层、池化层和全连接层的组合,提取图像的特征,实现图像分类和识别。

from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D, Flatten, Dense

# 构建卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
1.2.2 迁移学习

迁移学习通过使用预训练模型,如VGG、ResNet等,在已有的模型基础上进行微调,适用于数据量较小或训练时间有限的场景。

from keras.applications import VGG16
from keras.models import Model
from keras.layers import GlobalAveragePooling2D

# 加载预训练模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(128, 128, 3))

# 冻结预训练模型的层
for layer in base_model.layers:
    layer.trainable = False

# 添加自定义分类层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

# 构建迁移学习模型
model = Model(inputs=base_model.input, outputs=predictions)

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
1.2.3 混合模型

混合模型结合多个模型的优点,通过集成学习的方法提高模型的稳定性和预测精度。

from keras.models import Model
from keras.layers import concatenate

# 构建两个子模型
model1 = Sequential()
model1.add(Conv2D(32, (3, 3), activation='relu', input_shape=(128, 128, 1)))
model1.add(MaxPooling2D((2, 2)))
model1.add(Flatten())

model2 = Sequential()
model2.add(Conv2D(64, (3, 3), activation='relu', input_shape=(128, 128, 1)))
model2.add(MaxPooling2D((2, 2)))
model2.add(Flatten())

# 合并子模型
combined = concatenate([model1.output, model2.output])
x = Dense(128, activation='relu')(combined)
output = Dense(10, activation='softmax')(x)

# 构建混合模型
model = Model(inputs=[model1.input, model2.input], outputs=output)

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

1.3 模型训练

模型训练是机器学习的核心步骤,通过优化算法最小化损失函数,调整模型参数,使模型在训练数据上表现良好。常见的优化算法包括梯度下降、随机梯度下降和Adam优化器等。

1.3.1 梯度下降

梯度下降通过计算损失函数对模型参数的导数,逐步调整参数,使损失函数最小化。

import numpy as np

# 定义损失函数
def loss_function(y_true, y_pred):
    return np.mean((y_true - y_pred) ** 2)

# 梯度下降优化
def gradient_descent(X, y, learning_rate=0.01, epochs=1000):
    m, n = X.shape
    theta = np.zeros(n)
    for epoch in range(epochs):
        gradient = (1/m) * X.T.dot(X.dot(theta) - y)
        theta -= learning_rate * gradient
    return theta

# 训练模型
theta = gradient_descent(X_train, y_train)
1.3.2 随机梯度下降

随机梯度下降在每次迭代中使用一个样本进行参数更新,具有较快的收敛速度和更好的泛化能力。

def stochastic_gradient_descent(X, y, learning_rate=0.01, epochs=1000):
    m, n = X.shape
    theta = np.zeros(n)
    for epoch in range(epochs):
        for i in range(m):
            gradient = X[i].dot(theta) - y[i]
            theta -= learning_rate * gradient * X[i]
    return theta

# 训练模型
theta = stochastic_gradient_descent(X_train, y_train)
1.3.3 Adam优化器

Adam优化器结合了动量和自适应学习率的优点,能够快速有效地优化模型参数。

from keras.optimizers import Adam

# 编译模型
model.compile(optimizer=Adam(learning_rate=0.001), loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(X_train, y_train, epochs=10, batch_size=32, validation_split=0.2)

1.4 模型评估与性能优化

模型评估是衡量模型在测试数据上的表现,通过计算模型的准确率、召回率、F1-score等指标,评估模型的性能。性能优化包括调整超参数、增加数据量和模型集成等方法。

1.4.1 模型评估指标

常见的模型评估指标包括准确率(Accuracy)、精确率(Precision)、召回率(Recall)和F1-score等。

from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score

# 计算评估指标
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred, average='weighted')
recall = recall_score(y_test, y_pred, average='weighted')
f1 = f1_score(y_test, y_pred, average='weighted')



print(f'Accuracy: {accuracy}')
print(f'Precision: {precision}')
print(f'Recall: {recall}')
print(f'F1-score: {f1}')
1.4.2 超参数调优

通过网格搜索(Grid Search)和随机搜索(Random Search)等方法,对模型的超参数进行调优,找到最优的参数组合。

from sklearn.model_selection import GridSearchCV

# 定义超参数网格
param_grid = {
    'batch_size': [16, 32, 64],
    'epochs': [10, 20, 30]
}

# 网格搜索
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)

# 输出最优参数
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = model.set_params(**best_params)
model.fit(X_train, y_train)
1.4.3 增加数据量

通过数据增强和采样技术,增加训练数据量,提高模型的泛化能力和预测性能。

from imblearn.over_sampling import SMOTE

# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train, y_train)

# 训练模型
model.fit(X_resampled, y_resampled)

# 预测与评估
y_pred = model.predict(X_test)
1.4.4 模型集成

通过模型集成的方法,将多个模型的预测结果进行组合,提高模型的稳定性和预测精度。常见的模型集成方法包括Bagging、Boosting和Stacking等。

from sklearn.ensemble import VotingClassifier

# 构建模型集成
ensemble_model = VotingClassifier(estimators=[
    ('cnn', model1),
    ('vgg', model2)
], voting='soft')

# 训练集成模型
ensemble_model.fit(X_train, y_train)

# 预测与评估
y_pred = ensemble_model.predict(X_test)

第二章:图像识别的具体案例分析

2.1 手写数字识别

手写数字识别是图像识别中的经典问题,通过分析手写数字图像,识别每个数字的类别。以下是手写数字识别的具体案例分析。

2.1.1 数据预处理

首先,对手写数字数据集进行预处理,包括数据清洗、归一化和数据增强。

from keras.datasets import mnist
from keras.utils import to_categorical

# 加载手写数字数据集
(X_train, y_train), (X_test, y_test) = mnist.load_data()

# 数据清洗
X_train = X_train / 255.0
X_test = X_test / 255.0

# 扩展维度
X_train = np.expand_dims(X_train, axis=-1)
X_test = np.expand_dims(X_test, axis=-1)

# 标签编码
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)

# 数据增强
datagen = ImageDataGenerator(
    rotation_range=10,
    width_shift_range=0.1,
    height_shift_range=0.1,
    horizontal_flip=False
)
datagen.fit(X_train)
2.1.2 模型选择与训练

选择合适的模型进行训练,这里以卷积神经网络为例。

# 构建卷积神经网络模型
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)))
model.add(MaxPooling2D((2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2, 2)))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dense(10, activation='softmax'))

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=10, validation_data=(X_test, y_test))
2.1.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Accuracy: {accuracy}')

# 超参数调优
param_grid = {
    'batch_size': [16, 32, 64],
    'epochs': [10, 20, 30]
}
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = model.set_params(**best_params)
model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=10, validation_data=(X_test, y_test))

# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train.reshape(X_train.shape[0], -1), y_train)
model.fit(X_resampled.reshape(-1, 28, 28, 1), y_resampled)

# 预测与评估
y_pred = model.predict(X_test)

2.2 图像分类

图像分类是通过分析图像的内容,将图像分配到预定义的类别中。以下是图像分类的具体案例分析。

2.2.1 数据预处理
from keras.datasets import cifar10
from keras.utils import to_categorical

# 加载图像分类数据集
(X_train, y_train), (X_test, y_test) = cifar10.load_data()

# 数据清洗
X_train = X_train / 255.0
X_test = X_test / 255.0

# 标签编码
y_train = to_categorical(y_train, num_classes=10)
y_test = to_categorical(y_test, num_classes=10)

# 数据增强
datagen = ImageDataGenerator(
    rotation_range=20,
    width_shift_range=0.2,
    height_shift_range=0.2,
    horizontal_flip=True
)
datagen.fit(X_train)
2.2.2 模型选择与训练

选择合适的模型进行训练,这里以迁移学习为例。

# 加载预训练模型
base_model = VGG16(weights='imagenet', include_top=False, input_shape=(32, 32, 3))

# 冻结预训练模型的层
for layer in base_model.layers:
    layer.trainable = False

# 添加自定义分类层
x = base_model.output
x = GlobalAveragePooling2D()(x)
x = Dense(128, activation='relu')(x)
predictions = Dense(10, activation='softmax')(x)

# 构建迁移学习模型
model = Model(inputs=base_model.input, outputs=predictions)

# 编译模型
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])

# 训练模型
model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=10, validation_data=(X_test, y_test))
2.2.3 模型评估与优化

评估模型的性能,并进行超参数调优和数据增强。

# 评估模型
loss, accuracy = model.evaluate(X_test, y_test)
print(f'Accuracy: {accuracy}')

# 超参数调优
param_grid = {
    'batch_size': [16, 32, 64],
    'epochs': [10, 20, 30]
}
grid_search = GridSearchCV(estimator=model, param_grid=param_grid, cv=5, scoring='accuracy')
grid_search.fit(X_train, y_train)
best_params = grid_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = model.set_params(**best_params)
model.fit(datagen.flow(X_train, y_train, batch_size=32), epochs=10, validation_data=(X_test, y_test))

# 数据增强
smote = SMOTE(random_state=42)
X_resampled, y_resampled = smote.fit_resample(X_train.reshape(X_train.shape[0], -1), y_train)
model.fit(X_resampled.reshape(-1, 32, 32, 3), y_resampled)

# 预测与评估
y_pred = model.predict(X_test)

第三章:性能优化与前沿研究

3.1 性能优化

3.1.1 特征工程

通过特征选择、特征提取和特征构造,优化模型的输入,提高模型的性能。

from sklearn.feature_selection import SelectKBest, f_classif

# 特征选择
selector = SelectKBest(score_func=f_classif, k=10)
X_selected = selector.fit_transform(X, y)
3.

1.2 超参数调优
通过网格搜索和随机搜索,找到模型的最优超参数组合。

from sklearn.model_selection import RandomizedSearchCV

# 随机搜索
param_dist = {
    'n_estimators': [50, 100, 150],
    'max_depth': [3, 5, 7, 10],
    'min_samples_split': [2, 5, 10]
}
random_search = RandomizedSearchCV(estimator=RandomForestClassifier(), param_distributions=param_dist, n_iter=10, cv=5, scoring='accuracy')
random_search.fit(X_train, y_train)
best_params = random_search.best_params_
print(f'Best parameters: {best_params}')

# 使用最优参数训练模型
model = RandomForestClassifier(**best_params)
model.fit(X_train, y_train)

# 预测与评估
y_pred = model.predict(X_test)
3.1.3 模型集成

通过模型集成,提高模型的稳定性和预测精度。

from sklearn.ensemble import StackingClassifier

# 构建模型集成
stacking_model = StackingClassifier(estimators=[
    ('cnn', model1),
    ('vgg', model2)
], final_estimator=LogisticRegression())

# 训练集成模型
stacking_model.fit(X_train, y_train)

# 预测与评估
y_pred = stacking_model.predict(X_test)

3.2 前沿研究

3.2.1 深度学习在图像识别中的应用

深度学习在图像识别中的应用包括卷积神经网络、生成对抗网络和自监督学习等。

3.2.2 强化学习在图像识别中的应用

强化学习通过与环境的交互,不断优化识别策略,在动态目标检测和自动驾驶中具有广泛的应用前景。

3.2.3 联邦学习与隐私保护

联邦学习通过在不交换数据的情况下进行联合建模,保护用户数据隐私,提高图像识别系统的安全性和公平性。

结语

机器学习作为图像识别领域的重要技术,已经在多个应用场景中取得了显著的成果。通过对数据的深入挖掘和模型的不断优化,机器学习技术将在图像识别中发挥更大的作用,推动计算机视觉和人工智能的发展。
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1893157.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小学vr虚拟课堂教学课件开发打造信息化教学典范

在信息技术的浪潮中,VR技术正以其独特的魅力与课堂教学深度融合,引领着教育方式的创新与教学方法的变革。这一变革不仅推动了“以教促学”的传统模式向“自主探索”的新型学习方式转变,更为学生带来了全新的学习体验。 运用信息技术融合VR教学…

前端学习(五)CSS浮动与补白

目录&#xff1a; 内容&#xff1a; //设置左右浮动 .left{float:left; } .right{float:right; } /*必须设置不同浮动*/ //创建div <div> <dic class"left">左边</div> <div class"right">右边</div> </div> //设置浮…

[C/C++] -- gdb调试与coredump

1.gdb调试 GDB&#xff08;GNU 调试器&#xff09;是一个强大的工具&#xff0c;用于调试程序。 安装 1. wget http://ftp.gnu.org/gnu/gdb/gdb-8.1.tar.gz 2. tar -zxvf gdb-8.1.1.tar.gz 3. cd gdb-8.1.1 4. ./configure 5. make 6. make install 基础用法 …

springboot的非物质文化遗产管理系统-计算机毕业设计源码16087

目录 摘要 1 绪论 1.1 选题背景与意义 1.2国内外研究现状 1.3论文结构与章节安排 2系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1系统开发流程 2.2.2 用户登录流程 2.2.3 系统操作流程 2.2.4 添加信息流程 2.2.5 修改信息流程 2.2.6 删除信息流程 2.3 系统功能…

图书管理系统(持久化存储数据以及增添新功能)

目录 一、数据库表设计 二、引入MyBatis 和MySQL 驱动依赖 三、配置数据库 & 日志 四、Model创建 五、枚举类 常量类用户登录 六、用户登录 七、添加图书 八、图书列表 九、修改图书 十、删除图书 十一、批量删除 十二、强制登录 十三、前端代码 &#xff0…

【C语言】bool 关键字

在C语言中&#xff0c;bool类型用于表示布尔值&#xff0c;即真或假。C语言本身在标准库中并未提供布尔类型&#xff0c;直到C99标准引入了stdbool.h头文件。该头文件定义了bool类型&#xff0c;以及两个常量&#xff1a;true和false。在此之前&#xff0c;通常使用整数来表示布…

6.8应用进程跨网络通信

《计算机网络》第7版&#xff0c;谢希仁 理解socket通信

初入Node.js必备知识

Node.js因什么而生&#xff0c;作用是干什么&#xff1f; Node.js是一个用c和c打造的一个引擎&#xff0c;他能够读懂JavaScript&#xff0c;并且让JavaScript能够和操作系统打交道的能力 JavaScript 原本只能在浏览器中运行,但随着Web应用程序越来越复杂,仅靠客户端JavaScri…

35 智能指针

目录 为什么需要智能指针&#xff1f;内存泄露智能指针的使用及原理c11和boost中智能指针的关系RAII扩展学习 1. 为什么需要智能指针&#xff1f; 下面我们先分析一下下面这段程序有没有什么内存方面的问题&#xff1f; int div() {int a, b;cin >> a >> b;if (…

AutoPSA的应力加强系数

GD2000里的直连三通的应力加强系数是错误的&#xff0c;建议用户删除再使用。 当应力加强系数为空的时候&#xff0c;psa是会自已计算应力加强系数&#xff1b;当用户填了加强系数&#xff0c;软件就优先用填了的加强系数&#xff1b; 直连三通和假三通的作用一样&#xff0c…

JAVA医院绩效考核系统源码:绩效考核的重要性、绩效管理分配实践具体实操,基于B/S架构开发的一套(公立医院绩效考核系统源码)

JAVA医院绩效考核系统源码&#xff1a;绩效考核的重要性、绩效管理分配实践具体实操&#xff0c;基于B/S架构开发的一套&#xff08;公立医院绩效考核系统源码&#xff09; 系统开发环境 开发语言&#xff1a;java 技术架构&#xff1a;B/S架构 开发工具&#xff1a;maven、…

C++基础(五):类和对象(上)

从今天开始&#xff0c;我们正式进入面向对象编程&#xff0c;这是C与C语言的重要区别&#xff0c;编程思想发生变化&#xff0c;那到底什么是面向对象编程呢&#xff1f;接下来&#xff0c;我们慢慢的深入学习。 目录 一、面向过程和面向对象初步认识 1.1 面向过程 1.2 面…

[激光原理与应用-97]:激光焊接焊中检测系统系列介绍 - 1 - 什么是焊接以及传统的焊接方法

目录 一、什么是焊接 1.1 概述 1.2 基本原理 二、传统的焊接技术与方法 2.1 手工电弧焊&#xff1a; 1、定义与原理 2、特点 3、焊条类型 4、应用领域 5、安全注意事项 2.2 气体保护焊&#xff1a; 1、原理与特点 2、应用领域 3、气体选择 4、注意事项 2.3 电阻…

Zabbix 配置PING监控

Zabbix PING监控介绍 如果需要判断机房的网络或者主机是否正常&#xff0c;这就需要使用zabbix ping&#xff0c;Zabbix使用外部命令fping处理ICMP ping的请求&#xff0c;在基于ubuntu APT方式安装zabbix后默认已存在fping程序。另外zabinx_server配置文件参数FpingLocation默…

layui中添加上下文提示弹窗

<p context-tip"自定义上下文提示信息">段落内容...</p> <div context-tip"自定义上下文提示信息">div内容...</div>// 悬浮提示 $("body").on("mouseenter", "*[context-tip]", function () {v…

清华 PowerPaint:多功能局部重绘模型

PowerPaint 是清华和上海人工智能实验室推出的一个开源高质量多功能的图像修补模型&#xff0c;同时支持插入物体、移除物体、图像扩展、形状可控的物体生成功能。 可以在 清华 PowerPaint&#xff1a;多功能局部重绘模型

【大语言模型系列之Transformer】

&#x1f3a5;博主&#xff1a;程序员不想YY啊 &#x1f4ab;CSDN优质创作者&#xff0c;CSDN实力新星&#xff0c;CSDN博客专家 &#x1f917;点赞&#x1f388;收藏⭐再看&#x1f4ab;养成习惯 ✨希望本文对您有所裨益&#xff0c;如有不足之处&#xff0c;欢迎在评论区提出…

关键词搜索商品API的工作原理是什么?

关键词搜索商品API的工作原理基于复杂的数据处理和检索机制&#xff0c;通过爬虫抓取、数据预处理、数据索引等流程。 在网上购物成为日常生活的一部分&#xff0c;关键词搜索商品API成为了电子商务平台不可或缺的功能。通过这种API&#xff0c;消费者可以轻松地通过输入关键字…

南京观海微电子----AC/DC、DC/DC转换器知识

什么是AC&#xff1f; Alternating Current&#xff08;交流&#xff09;的首字母缩写。 AC是大小和极性&#xff08;方向&#xff09;随时间呈周期性变化的电流。 电流极性在1秒内的变化次数被称为频率&#xff0c;以Hz为单位表示。 什么是DC? Direct Current&#xff08;直流…

微深节能 煤码头自动化翻堆及取料集控系统 格雷母线

微深节能格雷母线高精度位移测量系统是一种先进的工业自动化位置检测解决方案&#xff0c;它被广泛应用于煤码头自动化翻堆及取料集控系统中&#xff0c;以实现对斗轮堆取料机等大型机械设备的精准定位和自动化控制。 系统原理简述&#xff1a; 格雷母线系统的工作原理基于电磁…