七大排序算法的深入浅出(java篇)

news2025/1/11 20:04:50
  • 🍁 个人主页:爱编程的Tom
  • 💫 本篇博文收录专栏:Java专栏
  • 👉 目前其它专栏:c系列小游戏     c语言系列--万物的开始_  等等             
  • 🎉 欢迎 👍点赞✍评论⭐收藏💖三连支持一下博主🤞
  • 🧨现在的沉淀就是对未来的铺垫🎨 

目录

前言 

1. 排序的概念及引用

排序的概念 

常见的排序算法 

2. 常见排序算法的实现 

插入排序 

选择排序 

交换排序 

归并排序 

3. 排序算法复杂度及稳定性分析 

4. 其他非基于比较排序 



 

前言 

本篇博客将论述java当中的七大排序,讲述它们的来龙去脉,以及具体思想,方便大家深入学习排序的相关算法,以及具备能够独立实现的具体方法……

1. 排序的概念及引用

  • 排序的概念 

排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序,这些记录的相对次序保持 不变,即在原序列中,r[i]=r[j],且r[i]在r[j]之前,而在排序后的序列中,r[i]仍在r[j]之前,则称这种排序算法是稳 定的;否则称为不稳定的。 

  

内部排序:数据元素全部放在内存中的排序。 外部排序:数据元素太多不能同时放在内存中,根据排序过程的要求不能在内外存之间移动数据的排序。  

  • 常见的排序算法 

2. 常见排序算法的实现 

  • 插入排序 

基本思想: 直接插入排序是一种简单的插入排序法,把待排序的记录按其关键码值的大小逐个插入到一个已经排好序的有序序列中,直到所有的记录插入完为止,得到 一个新的有序序列 。实际中我们玩扑克牌时,就用了插入排序的思想。

  • 直接插入排序 

当插入第i(i>=1)个元素时,前面的array[0],array[1],…,array[i-1]已经排好序,此时用array[i]的排序码与array[i1],array[i-2],…的排序码顺序进行比较,找到插入位置即将array[i]插入,原来位置上的元素顺序后移  

 直接插入排序的特性总结:

1. 元素集合越接近有序,直接插入排序算法的时间效率越高

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1),它是一种稳定的排序算法

4. 稳定性:稳定

参考代码: 

 /*
    时间复杂度:最好情况:O(N)--数据有序  ;;  最坏情况下:O(N^2) --数据逆序
    空间复杂度:O(1)
    稳定性:稳定的  //本身稳定,可实现不稳定/本身不稳定,不能实现
    特点:数据有序,插入越快,效率越高
     */
    public static void insertSort(int[] array) {
        for (int i = 1; i < array.length; i++) {
            int tmp = array[i];
            int j = i - 1;
            for (  ; j >= 0; j--) {
                if (array[j] > tmp) {
                    array[j+1] = array[j];
                }else {
                    break;
                }
            }
            array[j+1] = tmp;

        }
    }
  • 希尔排序( 缩小增量排序 ) 

希尔排序法又称缩小增量法。希尔排序法的基本思想是:先选定一个整数,把待排序文件中所有记录分成多个组, 所有距离为的记录分在同一组内,并对每一组内的记录进行排序。然后,取重复上述分组和排序的工作。当到达 =1时,所有记录在统一组内排好序。 

希尔排序的特性总结

1. 希尔排序是对直接插入排序的优化。

2. 当gap > 1时都是预排序,目的是让数组更接近于有序。当gap == 1时,数组已经接近有序的了,这样就会很 快。这样整体而言,可以达到优化的效果。我们实现后可以进行性能测试的对比。

3. 希尔排序的时间复杂度不好计算,因为gap的取值方法很多,导致很难去计算,因此在好些树中给出的希尔排 序的时间复杂度都不固定 

4. 稳定性:不稳定 

参考代码: 

   //不稳定的排序
    public static void shellSort(int[] array) {
        int gap = array.length;
        while(gap > 1) {
            gap = gap / 3 + 1;
            shell(array,gap);
        }

    }

    private static void shell(int[] array,int gap) {
        for (int i = gap; i < array.length; i++) {
            int tmp = array[i];
            int j = i - gap;
            for (  ; j >= 0; j-=gap) {
                if (array[j] > tmp) {
                    array[j+gap] = array[j];
                }else {
                    break;
                }
            }
            array[j+gap] = tmp;

        }
    }

 

  • 选择排序 

核心思想:每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完 。 

  • 直接选择排序:
  • 在元素集合array[i]--array[n-1]中选择关键码最大(小)的数据元素
  • 若它不是这组元素中的最后一个(第一个)元素,则将它与这组元素中的最后一个(第一个)元素交换,在剩余的array[i]--array[n-2](array[i+1]--array[n-1])集合中,重复上述步骤,直到集合剩余1个元素

【直接选择排序的特性总结】

1. 直接选择排序思考非常好理解,但是效率不是很好。实际中很少使用

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1)

4. 稳定性:不稳定 

  • 堆排序 

堆排序(Heapsort)是指利用堆积树(堆)这种数据结构所设计的一种排序算法,它是选择排序的一种。它是通过堆 来进行选择数据。此处注意:排升序要建大堆,排降序建小堆。 

下图是一个堆排序的详细步骤图示:

【直接选择排序的特性总结】

1. 堆排序使用堆来选数,效率就高了很多。

2. 时间复杂度:O(N*logN)

3. 空间复杂度:O(1)

4. 稳定性:不稳定 

参考代码: 

  /*
    堆排序
    时间复杂度:O(N*logN)
    空间复杂度:o(1)
    稳定性:不稳定的
     */
    public static void heapSort(int[] array) {
        //创建大根堆
        createHeap(array);
        int end =array.length-1;
        while (end > 0) {
            swap(array,0,end);
            siftDown(array,0,end);
            end--;
        }

    }
    private static void createHeap(int[] array) {
        for (int parent = (array.length-1-1)/2; parent >= 0; parent--) {
            siftDown(array,parent,array.length);
        }
    }

    private static void siftDown(int[] array, int parent, int len) {
        int child = (2 * parent) + 1;
        while (child < len) {
            if (child + 1 < len && array[child] < array[child + 1]) {
                child = child + 1;
            }
            if (array[child] > array[parent]) {
                swap(array, child, parent);
                parent = child;
                child = 2 * parent + 1;
            } else {
                break;
            }
        }
    }

 

交换排序 

基本思想:所谓交换,就是根据序列中两个记录键值的比较结果来对换这两个记录在序列中的位置特点:将键值较大的记录向序列的尾部移动,键值较小的记录向序列的前部移动。

  • 冒泡排序 

【冒泡排序的特性总结】

1. 冒泡排序是一种非常容易理解的排序

2. 时间复杂度:O(N^2)

3. 空间复杂度:O(1)

4. 稳定性:稳定 

  • 快速排序 

快速排序是Hoare于1962年提出的一种二叉树结构的交换排序方法,其基本思想为:任取待排序元素序列中的某元素作为基准值,按照该排序码将待排序集合分割成两子序列,左子序列中所有元素均小于基准值,右子序列中所有元素均大于基准值,然后最左右子序列重复该过程,直到所有元素都排列在相应位置上为止。  

// 假设按照升序对array数组中[left, right)区间中的元素进行排序
void QuickSort(int[] array, int left, int right)
{
    if(right - left <= 1)
        return;
    
    // 按照基准值对array数组的 [left, right)区间中的元素进行划分
    int div = partion(array, left, right);
    
    // 划分成功后以div为边界形成了左右两部分 [left, div) 和 [div+1, right)
    // 递归排[left, div)
    QuickSort(array, left, div);
    
    // 递归排[div+1, right)
    QuickSort(array, div+1, right);
}

将区间按照基准值划分为左右两半部分的常见方式有:

  • Hoare版  

private static int partition(int[] array, int left, int right) {
    int i = left;
    int j = right;
    int pivot = array[left];
    while (i < j) {
        while (i < j && array[j] >= pivot) {
            j--;
       }
        
        while (i < j && array[i] <= pivot) {
            i++;
       }
        
        swap(array, i, j);
   }
    swap(array, i, left);
    return i;
}
  • 挖坑法 

3. 前后指针
private static int partition(int[] array, int left, int right) {
    int i = left;
    int j = right;
    int pivot = array[left];
    while (i < j) {
        while (i < j && array[j] >= pivot) {
            j--;
       }
        
        array[i] = array[j];
        
        while (i < j && array[i] <= pivot) {
            i++;
       }
        
        array[j] = array[i];
   }
    array[i] = pivot;
    return i;
}
  • 前后指针 

下面提供了两种写法:

写法一:

private static int partition(int[] array, int left, int right) {
    int prev = left ;
    int cur = left+1;
    while (cur <= right) {
        if(array[cur] < array[left] && array[++prev] != array[cur]) {
            swap(array,cur,prev);
       }
        cur++;
   }
    swap(array,prev,left);
    return prev;
}

写法二: 

private static int partition(int[] array, int left, int right) {
 int d = left + 1;
    int pivot = array[left];
    for (int i = left + 1; i <= right; i++) {
        if (array[i] < pivot) {
            swap(array, i, d);
            d++;
       }
   }
    swap(array, d - 1, left);
    
    return d - 1;
}
  • 快速排序优化 

1. 三数取中法选key   

2. 递归到小的子区间时,可以考虑使用插入排序 

  • 快速排序非递归 
void quickSortNonR(int[] a, int left, int right) {
    Stack<Integer> st = new Stack<>();
    st.push(left);
    st.push(right);
    while (!st.empty()) {
        right = st.pop();
        left = st.pop();
        if(right - left <= 1)
            continue;
        int div = PartSort1(a, left, right);
        // 以基准值为分割点,形成左右两部分:[left, div) 和 [div+1, right)
        st.push(div+1);
        st.push(right);
        
        st.push(left);
        st.push(div);
   }
}
  • 快速排序总结 

1. 快速排序整体的综合性能和使用场景都是比较好的,所以才敢叫快速排序

2. 时间复杂度:O(N*logN)  

3. 空间复杂度:O(logN)

4. 稳定性:不稳定

  • 归并排序 

  • 基本思想 

 归并排序(MERGE-SORT)是建立在归并操作上的一种有效的排序算法,该算法是采用分治法(Divide and Conquer)的一个非常典型的应用。将已有序的子序列合并,得到完全有序的序列;即先使每个子序列有序,再使 子序列段间有序。若将两个有序表合并成一个有序表,称为二路归并。 归并排序核心步骤:

 

  • 归并排序总结:

1. 归并的缺点在于需要O(N)的空间复杂度

    归并排序的思考更多的是解决在磁盘中的外排序问题

2. 时间复杂度:O(N*logN)

3. 空间复杂度:O(N)

4. 稳定性:稳定  

参考代码: <递归版本>

/**
     * 时间复杂度:O(N*logN)
     * 空间复杂度:O(N)
     * 稳定性:稳定
     * 稳定的排序:插入、冒泡、归并
     * @param array
     */
    public static void mergeSort(int[] array) {
        mergeFunc(array,0,array.length-1);
    }
    private static void mergeFunc(int[] array,int left,int right) {
        if (left >= right) {
            return;
        }
        int mid = left+((right-left) >> 1);
        mergeFunc(array,left,mid);
        mergeFunc(array,mid+1,right);
        //左右分解完,开始合并
        merge(array,left,mid,right);

    }
    //合并算法
    private static void merge(int[] array,int left,int mid,int right) {
        int s1 = left;
        int e1 = mid;
        int s2 = mid+1;
        int e2 = right;
        int[] tmpArr = new int[right-left+1];
        int k = 0;
        //保证两个表里都有数据
        while (s1 <= e1 && s2 <= e2) {
            if (array[s1] <= array[s2]) {
                tmpArr[k++] = array[s1++];
            }else {
                tmpArr[k++] = array[s2++];
            }
        }
        //看哪个数组,还有数据
        while (s1 <= e1) {
            tmpArr[k++] = array[s1++];
        }
        while (s2 <= e2) {
            tmpArr[k++] = array[s2++];
        }
        //拷贝到源数组
        for (int i = 0; i < k; i++) {
            array[i+left] =tmpArr[i];
        }
    }

 

  • 海量数据的排序问题  
  • 外部排序:排序过程需要在磁盘等外部存储进行的排序
  • 前提:内存只有 1G,需要排序的数据有 100G

因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序

1. 先把文件切分成 200 份,每个 512 M

2. 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以

3. 进行2路归并,同时对 200 份有序文件做归并过程,最终结果就有序了 

3. 排序算法复杂度及稳定性分析 

 

  • 各种算法的比较

 

4. 其他非基于比较排序 

  • 计数排序

思想:计数排序又称为鸽巢原理,是对哈希直接定址法的变形应用。

操作步骤:

1. 统计相同元素出现次数

2. 根据统计的结果将序列回收到原来的序列中 

【计数排序的特性总结

1. 计数排序在数据范围集中时,效率很高,但是适用范围及场景有限。

2. 时间复杂度:O(MAX(N,范围))

3. 空间复杂度:O(范围)

4. 稳定性:稳定 

参考代码

  /**
     * 时间复杂度:O(范围+N)
     * 范围=max-min -->最好数据集中一点
     * 是稳定的
     * @param array
     */

    public static void countSort(int[] array) {
        int min = array[0];
        int max = array[0];
        for (int i = 0; i < array.length; i++) {
            if (min > array[i]) {
                min = array[i];
            }
            if (max < array[i]) {
                max = array[i];
            }
        }
        //定义计数数组,进行初始化
        int[] count = new int[max-min+1];
        for (int i = 0; i < array.length; i++) {
            int index = array[i]-min;
            count[index]++;
        }

        //遍历计数数组
        int k = 0;//表示array数组的下标
        for (int i = 0; i < count.length; i++) {
            while (count[i] != 0) {
                array[k] = i + min;
                k++;
                count[i]--;
            }
        }
    }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1890326.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

面试题 4:阐述以下方法 @classmethod, @staticmethod, @property?

欢迎莅临我的博客 &#x1f49d;&#x1f49d;&#x1f49d;&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」…

CesiumJS【Basic】- #058 绘制网格填充多边形(Entity方式)-使用shader

文章目录 绘制网格填充多边形(Entity方式)-使用shader1 目标2 代码2.1 main.ts绘制网格填充多边形(Entity方式)-使用shader 1 目标 使用Entity方式绘制绘制网格填充多边形 - 使用shader 2 代码 2.1 main.ts import * as Cesium from cesium;// 创建 Cesium Viewer 实例…

MyBatis踩坑记录-多表关联字段相同,字段数据覆盖问题

MyBatis踩坑记录-多表关联字段相同&#xff0c;字段数据覆盖问题 1. 背景描述2. 实体记录3. 错误映射3.1 造成的影响 4. 解决办法4.1 修改映射文件 5. 修复后的效果5.1 返回的数据5.2 正确展示 7. end ~ 1. 背景描述 现有一下业务&#xff0c;单个任务下可能会有多个子任务&am…

【日记】在街上跳舞被同事看见了(470 字)

正文 昨晚跳舞&#xff0c;照例在街上表演&#xff0c;被单位里的保洁阿姨撞见了…… 我以为这就完了&#xff0c;结果她还拍了视频发给做饭阿姨。晚上吃饭无意间聊起才知道有这回事。我竟一时间不知该哭还是该笑……. 今天非常非常闲。虽然不是没工作&#xff0c;只是我懒得去…

客户端渗透

1.一键可执行程序 2.给程序加壳 3.宏病毒感染文档 4.Android apk 利用 1.一键可执行程序 介绍&#xff1a;我们要进行客户端渗透&#xff0c;我们生成一个可执行程序&#xff0c;也是简单粗暴&#xff0c;MSF建立监听&#xff0c;把它发给受害者&#xff0c;只要受害者点击…

CAN学习笔记

学习链接&#xff1a;CAN学习笔记&#xff08;1&#xff09;_can sjw-CSDN博客 内容全部取自链接&#xff0c;非原创。用于自己学习和记录&#xff0c;如有错误请指正。如果侵权了&#xff0c;请联系我删掉。 CAN主要有两种物理层&#xff0c;1.闭环的ISO11898 2.开环的ISO1…

Django学习第三天

python manage.py runserver 使用以上的命令启动项目 实现新建用户数据功能 views.py文件代码 from django.shortcuts import render, redirect from app01 import models# Create your views here. def depart_list(request):""" 部门列表 ""&qu…

【JVM-05】Java内存区域(运行时数据区)、对象创建过程、内存布局

【JVM-05】Java内存区域即运行时数据区、对象创建过程、内存布局 1. 介绍下Java内存区域(运行时数据区)1.1 程序计数器(线程私有)1.2 虚拟机栈(线程私有)1.3 本地方法栈(线程私有)1.4 Java堆(线程共享)1.5 方法区(线程共享)1.5.1 方法区和永久代的关系1.5.2 常用参数1.5.3 为什…

2024年上半年典型网络攻击事件汇总

文章目录 前言一、Ivanti VPN 的0 Day攻击(2024年1月)二、微软公司高管账户泄露攻击(2024年1月)三、Change Healthcare网络攻击(2024年2月)四、ConnectWise ScreenConnect漏洞利用攻击(2024年2月)五、XZ Utils软件供应链攻击(2024年3月)六、AT&T数据泄露攻击(20…

软件系统测试的内容和流程大揭秘,如何获取系统测试报告?

软件系统测试是指对软件系统的功能、性能、安全等方面进行验证和确认的过程。它是软件开发过程中至关重要的一环&#xff0c;通过测试可以发现并修复软件中存在的缺陷和问题&#xff0c;确保软件的质量和可靠性。在当前日益竞争激烈的市场环境下&#xff0c;软件系统测试显得尤…

你想活出怎样的人生?

hi~好久不见&#xff0c;距离上次发文隔了有段时间了&#xff0c;这段时间&#xff0c;我是裸辞去感受了一下前端市场的水深火热&#xff0c;那么这次咱们不聊技术&#xff0c;就说一说最近这段时间的经历和一些感触吧。 先说一下自己的个人情况&#xff0c;目前做前端四年&am…

朋友圈运营必备!一键转发和自动转发轻松搞定!

你还在手动发布多个微信号的朋友圈吗&#xff1f; 现在&#xff0c;就教你一招&#xff0c;让你轻松实现一键转发和自动转发朋友圈&#xff01; 首先&#xff0c;我们需要在个微管理系统上登录自己的微信号&#xff0c;以便进行统一管理。这个系统可以多个微信号同时登录&…

C++初学者指南-3.自定义类型(第一部分)-异常

C初学者指南-3.自定义类型(第一部分)-异常 文章目录 C初学者指南-3.自定义类型(第一部分)-异常简介什么是异常&#xff1f;第一个示例用途:报告违反规则的行为异常的替代方案标准库异常处理 问题和保证资源泄露使用 RAII 避免内存泄漏&#xff01;析构函数&#xff1a;不要让异…

elementui中@click短时间内多次触发,@click重复点击,做不允许重复点击处理

click快速点击&#xff0c;发生多次触发 2.代码示例&#xff1a; //html<el-button :loading"submitLoading" type"primary" click"submitForm">确 定</el-button>data() {return {submitLoading:false,}}//方法/** 提交按钮 */sub…

【UE5.3】笔记6-创建可自由控制Pawn类

搭建场景 搭建一个场景&#xff1a;包含地板、围墙。可以根据喜好加一些自发光的效果。 增加食物 创建食物蓝图类&#xff0c;在场景里放置一些食物以供我们player去吃掉获取分值。 创建可控制的layer 我们先右键创建一个蓝图继承自pawn类&#xff0c;起名BP_Player&#xf…

linux应用开发基础知识(八)——内存共享(mmap和system V)

mmap内存映射 内存共享定义 内存映射&#xff0c;简而言之就是将用户空间的一段内存区域映射到内核空间&#xff0c;映射成功后&#xff0c;用户对这段内存区域的修改可以直接反映到内核空间&#xff0c;同样&#xff0c;内核空间对这段区域的修改也直接反映用户空间。那么对…

[leetcode hot 150]第四百五十二题,用最少数量的箭引爆气球

题目&#xff1a; 有一些球形气球贴在一堵用 XY 平面表示的墙面上。墙面上的气球记录在整数数组 points &#xff0c;其中points[i] [xstart, xend] 表示水平直径在 xstart 和 xend之间的气球。你不知道气球的确切 y 坐标。 一支弓箭可以沿着 x 轴从不同点 完全垂直 地射出。…

【leetcode64-69二分查找、70-74栈、75-77堆】

二分查找[64-69] 时间复杂度O(log n)&#xff0c;要想到二分排序 35.搜索插入位置 class Solution:def searchInsert(self, nums: List[int], target: int) -> int:left 0right len(nums)-1while left < right: #左闭右闭mid (leftright)//2if nums[mid] < target…

Unity Animator 运行时修改某个动画状态的播放速度

1.添加动画参数&#xff0c;选择需要动态修改速度的动画状态 2.在属性面板种设置速度倍速参数

MySQL之备份与恢复(二)

备份与恢复 定义恢复需求 如果一切正常&#xff0c;那么永远也不需要考虑恢复。但是&#xff0c;一旦需要恢复&#xff0c;只有世界上最好的备份系统是没用的&#xff0c;还需要一个强大的恢复系统。 不幸的是&#xff0c;让备份系统平滑工作比构造良好的恢复过程和工具更容易…