一篇文章入门主成分分析PCA

news2025/1/9 16:08:34

文章目录

  • 基本概念
    • 事件
    • 随机变量
      • 独立同分布
      • 离散型随机变量
        • 伯努利分布(两点分布)
        • 二项分布
        • 几何分布
        • 泊松分布
      • 连续型随机变量
        • 正态分布
    • 期望
    • 方差
    • 标准化
    • 协方差
    • 相关系数
    • 线性组合
    • 特征值和特征向量
    • 特征值分解
      • 对称矩阵的特征值分解
    • 齐次线性方程组
    • 单位向量
    • 基向量
    • 矩阵的秩
    • 最高阶非零子式
    • 正定矩阵
    • 正交矩阵
    • 正交基
    • 逆矩阵
    • 伴随矩阵
    • 奇异值分解
  • 主成分分析

基本概念

事件

事件:某种情况的“陈述” ⇒ \Rightarrow 事件A:掷出的骰子为偶数点 ⇒ \Rightarrow 事件A包含多种结果,每种结果都是一个基本事件 ⇒ \Rightarrow 事件的本质是集合
事件之间的基本关系:

  1. 蕴含与相等:如果当A发生时B必发生 ,记数学公式: A ⊂ B A \subset B AB数学公式: ⇒ \Rightarrow 当数学公式: A , B A,B A,B相互蕴含时,两式相等,记数学公式: A = B A=B A=B
  2. 互斥与对立:在一次试验中不可能同时发生,但可以都不发生,有A就没有B,有B没有A,但是可以同时没有A和B数学公式: ⇒ \Rightarrow A为一事件,则事件 B={A不发生} ,则A和B互为对立事件
  3. 事件和(或称并集):A和B中至少发生一个(并集),记数学公式: C = A + B C=A+B C=A+B
  4. 事件积(或称交集):A发生且B发生(交集),记数学公式: C = A B C=AB C=AB
  5. 事件差:A发生且B不发生,记数学公式: C = A − B C=A-B C=AB

全概率公式:一个事件的概率,该事件可以表示为若干互斥事件的联合
在这里插入图片描述

随机变量

随机变量是实验结果的函数 ⇒ \Rightarrow 抛一枚硬币,定义1=正面朝上 ,0=反面朝上,所以随机变量 X X X就代表抛硬币这个试验的结果,要么0要么1

独立同分布

独立性:一个随机变量的取值不会影响另一个随机变量的取值
同分布:所有随机变量服从相同的概率分布

离散型随机变量

伯努利分布(两点分布)

伯努利分布:两种可能结果的实验(如成功和失败),成功的概率为 p p p,失败的概率为 1 − p 1-p 1p
概率密度函数: P ( X = x ) = { p if   x = 1 1 − p if   x = 0 P(X=x)=\begin{cases}p&\text{if}\ \ x=1\\1-p&\text{if}\ \ x=0\end{cases} P(X=x)={p1pif  x=1if  x=0
期望值: E ( X ) = p E(X)=p E(X)=p
方差: V a r ( X ) = p ( 1 − p ) Var(X)=p(1-p) Var(X)=p(1p)

二项分布

二项分布:n次独立同分布的伯努利试验的成功次数的分布,每次试验成功的概率为 p p p 概率密度函数: P ( X = k ) = ( n k ) p k ( 1 − p ) n − k P(X=k)=\binom{n}kp^k(1-p)^{n-k} P(X=k)=(kn)pk(1p)nk
期望值: E ( X ) = n p E(X)=np E(X)=np
方差: V a r ( X ) = n p ( 1 − p ) Var(X)=np(1-p) Var(X)=np(1p)

几何分布

几何分布:在第一次成功之前的失败次数(包括第一次成功),每次试验成功的概率为 p p p
概率密度函数: P ( X = k ) = ( 1 − p ) k p for   k = 0 , 1 , 2 , … P(X=k)=(1-p)^kp\quad\text{for}\ \ k=0,1,2,\ldots P(X=k)=(1p)kpfor  k=0,1,2,
期望值: E ( X ) = 1 − p p E(X)=\frac{1-p}p E(X)=p1p
方差: Var ⁡ ( X ) = 1 − p p 2 \operatorname{Var}(X)=\frac{1-p}{p^2} Var(X)=p21p

泊松分布

泊松分布:单位时间或空间内某事件的发生次数,在一个间隔中平均发生事件的次数由 λ \lambda λ决定, λ \lambda λ是事件发生比率
概率密度函数: P ( X = k ) = λ k e − λ k ! P(X=k)=\frac{\lambda^ke^{-\lambda}}{k!} P(X=k)=k!λkeλ
期望值: E ( X ) = λ E(X)=\lambda E(X)=λ
方差: Var ⁡ ( X ) = λ \operatorname{Var}(X)=\lambda Var(X)=λ
“事件”可理解为一天中网站的访客数、一天中所接到的电话数

例如:每周平均有15个人给我的博客点赞,我想预测下一周的点赞数

如果使用二项分布来解决,令 x x x表示在 n n n次重复实验中发生点赞的次数, p p p表示每次实验的点赞概率(Probability)。我们现在已知的是每周平均的点赞比率(rate)为15个赞/周,并不知道点赞概率 p p p和博客访客数 n n n的任何信息
假设过去的1年(=52周)的数据中,一共有 10000 10000 10000人看了我的博客,其中有 800 800 800个人点赞了,这样平均每周访客数 = 10000 / 52 = 192 =10000 / 52 = 192 =10000/52=192,平均每周点赞数 = 800 / 52 = 15 =800 / 52 = 15 =800/52=15,可得到概率 p = 800 / 10000 = 0.08 = 8 % p = 800 / 10000 = 0.08 = 8 \% p=800/10000=0.08=8%
使用二项分布的概率密度函数,预测下一周有20个人点赞的概率为: B i n ( m = 20 ∣ N = 192 , p = 0.08 ) = N ! ( N − m ) ! m ! p m ( 1 − p ) N − m = 0.04657 \mathrm{Bin(m=20\mid N=192,p=0.08)=\frac{N!}{(N-m)!m!}p^m(1-p)^{N-m}=0.04657} Bin(m=20N=192,p=0.08)=(Nm)!m!N!pm(1p)Nm=0.04657

在上述过程中,可以将x=该周有15次点赞,也可以是x=该天有 15 / 7 = 2.1 15/7=2.1 15/7=2.1个赞,也可以是x=该小时有 15 / 7 ∗ 24 = 0.1 15/7*24=0.1 15/724=0.1个赞,这意味着大多数小时没有赞,而有的小时有一个点赞。仔细想想,似乎一定时间内出现超过1个点赞的情况也是合理的(比如文章早上刚发布的时候)。由此,二项分布的问题是它无法在一个时间单元中包含超过1次的事件(在这里,时间单元是1小时)
那么,我们将1小时切分成60分钟,时间单元是1分钟,使得1小时能够包含多个事件。问题得到解决了吗?还没有,比如何同学的5G视频,一晚上点赞就过百万,1分钟内不止一个赞。那我们再将时间单元切分成秒,这样1分钟又能包含多个事件。这样思考下去,我们会将已有的事件单元不断地切分,直到满足一个时间单元只包含一个事件,而大的时间单元能够包含1个以上的事件
形式化来看,这意味着 n → ∞ n\to \infty n,当我们假定比率(rate)固定,则必须让 p → 0 p\to 0 p0,否则点赞数 n × p → ∞ n \times p \to \infty n×p
基于以上的约束,时间单元变得无穷小。我们不用担心同一个时间单元包含一个以上的事件了
在用二项分布时,无法直接用比率(rate)来计算点赞概率 p p p,而是需要 n n n p p p才能使用二项分布的概率密度函数,而泊松分布不需要知道 n n n p p p,它假定 n n n是一个无穷大的数,而 p p p是无穷小的数,泊松分布唯一参数是比率 λ \lambda λ。现实中,得知 n n n p p p得进行很多次实验,而短时间内,比率(rate)很容易得到(例如,在下午2点-4点,收到了4个点赞)
在这里插入图片描述
在这里插入图片描述
泊松分布的假设:每个时间单元的事件平均发生比率是常数
例如:博客的每小时平均点赞数不太可能服从泊松分布,而博客每个月的平均点赞数可近似看作是固定的。假如你的博客写的很好,被公众号转发推广了,那可能会有大批的读者来阅读,这种情况下的点赞数就不满足泊松分布了
泊松分布的适用条件:

  1. 事件独立性:事件的发生是相互独立的,例如,每个读者对文章的点赞行为不受其他读者行为的影响
  2. 事件发生概率相等:每个事件在单位时间或空间内发生的概率是相同的
  3. 单位时间或空间内事件的发生率固定:单位时间或空间内事件的平均发生次数( λ \lambda λ)是固定的

当博客被公众号转发推广后,会出现以下变化:

  1. 读者行为不再独立:由于公众号转发,读者可能会集中在某个时间段内大量访问博客,导致点赞行为之间不再独立。例如,一个读者点赞后,可能会引起更多读者来点赞,这种情况下点赞行为具有相关性
  2. 事件发生概率不再相等:在被转发推广的时段,点赞的概率可能会显著提高,导致某些时间段内的点赞率远高于平时
  3. 事件发生率不固定:被推广后,单位时间内的访问量和点赞量会显著增加,不再符合泊松分布所要求的固定事件发生率

在这里插入图片描述

连续型随机变量

正态分布

概率密度函数: f ( x ) = 1 2 π σ 2 e − ( x − μ ) 2 2 σ 2 f(x)=\frac1{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}} f(x)=2πσ2 1e2σ2(xμ)2
期望值: E ( x ) = μ E(x)=\mu E(x)=μ
方差: Var ⁡ ( X ) = σ 2 \operatorname{Var}(X)=\sigma^2 Var(X)=σ2

期望

期望是随机变量取值的平均,以概率为权重对随机变量进行加权求和
平均数是对一组已经观察到的样本进行统计的量
由于概率是频率随样本趋于无穷的极限,所以期望其实就是平均数随样本趋于无穷的极限,两者是通过大数定理联系起来的

  • 离散型随机变量的期望值 E ( X ) \mathrm{E}(X) E(X) E ( X ) = ∑ i x i P ( X = x i ) \mathrm{E}(X)=\sum_ix_iP(X=x_i) E(X)=ixiP(X=xi)
  • 连续型随机变量的期望值 E ( X ) \mathrm{E}(X) E(X) E ( X ) = ∫ − ∞ ∞ x f X ( x ) d x E(X)=\int_{-\infty}^\infty xf_X(x) dx E(X)=xfX(x)dx

期望的性质:

  1. E ( X 1 + X 2 + ⋯ + X n ) = E ( X 1 ) + E ( X 2 ) + ⋯ + E ( X n ) \mathrm{E}\left(\mathrm{X}_1 +\mathrm{X}_2 + \cdots +\mathrm{X}_\mathrm{n}\right)=\mathrm{E}\left(\mathrm{X}_1 \right)+\mathrm{E}\left(\mathrm{X}_2 \right)+ \cdots+\mathrm{E}\left(\mathrm{X}_\mathrm{n} \right) E(X1+X2++Xn)=E(X1)+E(X2)++E(Xn)(无条件成立)
  2. E ( X 1 X 2 ⋯ X n ) = E ( X 1 ) E ( X 2 ) ⋯ E ( X n ) \mathrm{E}(X_1 X_2 \cdots X_n) = \mathrm{E}(X_1 ) \mathrm{E} (X_2 ) \cdots \mathrm{E} (X_n ) E(X1X2Xn)=E(X1)E(X2)E(Xn)(独立情况下成立)

方差

方差是用来衡量随机变量和其数学期望之间的偏离程度的量,方差越大,那么这一组数据的波动幅度也就越大
因为 X X X是随机的,所以偏离的量 X − E X X-EX XEX本身也是随机的,为了避免正负相互抵消,对其取平方作为偏离量,很自然方差就是该偏离量的期望,定义为: V a r ( X ) = E ( X − E X ) 2 = E ( X 2 ) − ( E X ) 2 \mathrm{Var(X)=E(X-EX)^2=E\left(X^2\right)-(EX)^2} Var(X)=E(XEX)2=E(X2)(EX)2
假如给定一个含有 n n n个样本的集合,则方差计算为: σ 2 = ∑ i = 1 n ( X i − X ˉ ) 2 n − 1 \mathrm{\sigma^2=\frac{\sum_{i=1}^n\left(X_i-\bar{X}\right)^2}{n-1}} σ2=n1i=1n(XiXˉ)2
之所以除以n-1而不是除以n,是因为我们是用样本去估计总体,除n-1才是统计学上的“无偏估计”,这样能使我们以较小的样本集更好的逼近总体的标准差
方差的性质:

  1. 常数的方差为 0 0 0
  2. C C C为常数,则 V a r ( X + C ) = V a r ( X ) \mathrm{Var(X+C)=Var(X)} Var(X+C)=Var(X)
  3. C C C为常数,则 V a r ( C X ) = C 2 V a r ( X ) \mathrm{Var(CX)=C^2Var(X)} Var(CX)=C2Var(X)
  4. 独立情况下, V a r ( X 1 + ⋯ + X n ) = V a r ( X 1 ) + ⋯ + V a r ( X n ) \mathrm{Var\left(X_1\right.+\cdots+X_n})=\mathrm{Var\left(X_1)\right.}+\cdots+\mathrm{Var\left(X_n\right)} Var(X1++Xn)=Var(X1)++Var(Xn)

标准化

标准化可以使每个样本的均值为0、标准差为1: x ′ = x − x ˉ σ \mathrm x'=\frac{\mathrm x-\bar{\mathrm x}}\sigma x=σxxˉ

协方差

协方差衡量两个随机变量之间的线性关系
对于两个随机变量 X X X Y Y Y,协方差的定义为 Cov ⁡ ( X , Y ) = E [ ( X − E ( X ) ) ( Y − E ( Y ) ) ] = E ( X Y ) − E ( X ) E ( Y ) \operatorname{Cov}(X,Y)=E\left[(X-E(X))(Y-E(Y))\right]=E(XY)-E(X)E(Y) Cov(X,Y)=E[(XE(X))(YE(Y))]=E(XY)E(X)E(Y)

  • 正协方差:如果 Cov ⁡ ( X , Y ) > 0 \operatorname{Cov}(X,Y)>0 Cov(X,Y)>0,则表明 X X X Y Y Y之间存在正的线性关系
  • 负协方差:如果 Cov ⁡ ( X , Y ) < 0 \operatorname{Cov}(X,Y)<0 Cov(X,Y)<0,则表明 X X X Y Y Y之间存在负的线性关系
  • 零协方差:如果 Cov ⁡ ( X , Y ) = 0 \operatorname{Cov}(X,Y)=0 Cov(X,Y)=0,则表明 X X X Y Y Y之间没有线性关系 ⇒ \Rightarrow 零协方差并不意味着 X X X Y Y Y完全不相关,它们可能存在非线性的关系

假设数据矩阵 X X X的大小为 n × p n\times p n×p,其中 n n n是样本数, p p p是特征数, X X X的每一行代表一个样本,每一列代表一个特征
给定数据矩阵 X X X,协方差矩阵的计算公式为: Σ = 1 n − 1 X T X \Sigma=\frac{1}{n-1}X^TX Σ=n11XTX
X T X X^TX XTX是一个 p × p p\times p p×p的矩阵,表示各特征之间的内积和
在这里插入图片描述

相关系数

协方差虽然能反映两个随机变量的相关程度,为了标准化这种相关性,我们通常使用相关系数(Correlation Coefficient),其定义为: ρ X , Y = Cov ⁡ ( X , Y ) σ X σ Y E [ ( X − E X ) ( Y − E Y ) ] σ X σ Y = E ( X Y ) − E ( X ) E ( Y ) E ( X 2 ) − E 2 ( X ) E ( Y 2 ) − E 2 ( Y ) \rho_{X,Y}=\frac{\operatorname{Cov}(X,Y)}{\sigma_X\sigma_Y}\begin{aligned}\frac{\mathrm{E}\left[\left(\mathrm{X}-\mathrm{E}\mathrm{X}\right)\left(\mathrm{Y}-\mathrm{E}\mathrm{Y} \right)\right]}{\sigma_\mathrm{X} \sigma_\mathrm{Y}}&=\frac{\mathrm{E}\left(\mathrm{X}\mathrm{Y}\right)-\mathrm{E}\left(\mathrm{X}\right)\mathrm{E}\left(\mathrm{Y}\right)}{\sqrt{\mathrm{E}\left(\mathrm{X}^2\right)-\mathrm{E}^2\left(\mathrm{X}\right)}\sqrt{\mathrm{E}\left(\mathrm{Y}^2\right)-\mathrm{E}^2\left(\mathrm{Y}\right)}}\end{aligned} ρX,Y=σXσYCov(X,Y)σXσYE[(XEX)(YEY)]=E(X2)E2(X) E(Y2)E2(Y) E(XY)E(X)E(Y),其中 σ X \sigma_X σX σ Y \sigma_Y σY分别是 X X X Y Y Y的标准差,相关系数 ρ X , Y \rho_{X,Y} ρX,Y的值域为 [ − 1 , 1 ] [-1,1] [1,1],值越接近 1 或 -1,表明 X X X Y Y Y之间的线性关系越强

线性组合

线性组合:设 β , α 1 , α 2 , . . . , α n \mathrm{\beta} , \alpha_{1} , \alpha_{2} , ..., \alpha_{\mathrm{n}} β,α1,α2,...,αn是一组 m m m维向量,若存在数 k 1 , k 2 , . . . , k n \mathrm{k_{1} , k_{2} , ...,k_{n}} k1,k2,...,kn,使得 β = k 1 α 1   + k 2 α 2   +   . . .   + k n α n \mathrm{\beta=k_1\alpha_1~+k_2\alpha_2~+~...~+k_n\alpha_n} β=k1α1 +k2α2 + ... +knαn,则称 β \beta β是向量组 α 1 , α 2 , . . . , α n \alpha_{1} , \alpha_{2} , ..., \alpha_{\mathrm{n}} α1,α2,...,αn的线性组合, k 1 , k 2 , . . . , k n \mathrm{k_{1} , k_{2} , ...,k_{n}} k1,k2,...,kn为一组组合系数
性质:

  1. 零向量可由任意向量组来线性表示 0 = 0 α 1 + 0 α 2 + . . . + 0 α n \mathbf{0}=0\alpha_1+0\alpha_2+...+0\alpha_\mathrm{n} 0=0α1+0α2+...+0αn
  2. 向量组中任意一个向量可由向量组来线性表示 α 3 = 0 α 1 + 0 α 2 + 1 α 3 + 0 α 4 \alpha_3=0\alpha_1+0\alpha_2+1\alpha_3+0\alpha_4 α3=0α1+0α2+1α3+0α4
  3. 任意一个向量都可由基向量 ε 1 = ( 1 , 0 , . . . , 0 ) , ε 2 = ( 0 , 1 , . . . , 0 ) , . . . , ε n = ( 0 , 0 , . . . , 1 ) \begin{aligned}\varepsilon_1& =(1,0,...,0),\varepsilon_2 =(0,1,...,0),...,\varepsilon_\text{n} =(0,0,...,1)\end{aligned} ε1=(1,0,...,0),ε2=(0,1,...,0),...,εn=(0,0,...,1)来线性表示 ( 1 , 2 , 3 ) = 1 × ( 1 , 0 , 0 ) + 2 × ( 0 , 1 , 0 ) + 3 × ( 0 , 0 , 1 ) (1,2,3)=1\times(1,0,0)+2\times(0,1,0)+3\times(0,0,1) (1,2,3)=1×(1,0,0)+2×(0,1,0)+3×(0,0,1)
    β = ( − 3 , 2 , − 4 ) , α 1 = ( 1 , 0 , 1 ) , α 2 = ( 2 , 1 , 0 ) , α 3 = ( − 1 , 1 , − 2 ) \beta = (-3,2,-4), \alpha_{1} = (1,0,1), \alpha_{2} = (2,1,0), \alpha_{3} =(-1,1,-2) β=(3,2,4),α1=(1,0,1),α2=(2,1,0),α3=(1,1,2),判断 β \beta β是否可由 α 1 , α 2 , α 3 \alpha_1,\alpha_2,\alpha_3 α1,α2,α3线性表示?
    在这里插入图片描述

特征值和特征向量

特征向量表示变换的方向,特征值表示在每个方向上的伸缩程度
在这里插入图片描述

特征值分解

相似矩阵:设 A , B A,B A,B都是 n n n阶矩阵,若有可逆矩阵 P P P,使 P − 1 A P = B \mathrm{P}^{-1}\mathrm{AP}=\mathrm{B} P1AP=B,则称 A A A B B B相似,这个过程称为相似变换, P P P为相似变换矩阵
如果 A A A与对角矩阵 Λ = ( λ 1 λ 2 ⋱ λ n ) \left.\boldsymbol{\Lambda}=\left(\begin{array}{rrrrr}\lambda_{1}&&&&\\&\lambda_{2}&&&\\&&\ddots&&\\&&&\lambda_{\mathrm{n}}&\end{array}\right.\right) Λ= λ1λ2λn 相似,即 P − 1 A P = Λ \mathrm{P}^{-1}\mathrm{AP}=\Lambda P1AP=Λ,那么 λ 1 , λ 2 , ⋯   , λ n \lambda_{1},\lambda_{2} ,\cdots ,\lambda_{\mathrm{n}} λ1,λ2,,λn A A A n n n个特征值,而 P P P的列向量 p i p_i pi就是 A A A对应于特征值 λ i \lambda_i λi的特征向量
P P P乘到右边,得到: A = P Λ P − 1 \mathrm A=\mathrm P\Lambda\mathrm P^{-1} A=PΛP1这个式子就是实际中经常用到的特征值分解,一个矩阵 A A A可以通过特征值分解得到它的特征值和特征向量

对称矩阵的特征值分解

对称矩阵: A T = A \mathrm{A^{T}}=\mathrm{A} AT=A ⇒ \Rightarrow 对称矩阵有 N N N个线性无关的特征向量,且不同特征值对应的特征向量相互正交
对称矩阵一定可以相似对角化,故实对称矩阵 A A A可以被分解成: A = P Λ P − 1 = P Λ P T \mathrm{A}=\mathrm{P} \Lambda\mathrm{P}^{-1}=\mathrm{P} \mathrm{\Lambda}\mathrm{P}^{\mathrm{T}} A=PΛP1=PT,其中 P P P为正交矩阵( P P T = E \mathrm{PP}^{\mathrm{T}}=\mathrm{E} PPT=E

齐次线性方程组

齐次线性方程组是指所有常数项(即方程的右端)都等于零的线性方程组 A x = 0 A\mathbf{x}=\mathbf{0} Ax=0,其中 A A A是一个 m × n m\times n m×n的矩阵, x \mathbf{x} x是一个 n n n维列向量, 0 \mathbf{0} 0是一个 m m m维列向量
在这里插入图片描述

单位向量

单位向量是指长度为1的向量,在欧几里得空间中,如果向量 u \mathbf{u} u满足 ∥ u ∥ = 1 \|\mathbf{u}\|=1 u=1,其中 ∥ u ∥ \|\mathbf{u}\| u表示向量 u \mathbf{u} u的长度,则 u \mathbf{u} u是一个单位向量
在这里插入图片描述

基向量

基向量是向量空间的一组向量,通过线性组合这些向量可以表示空间中的任何向量,向量空间中的基向量通常是线性无关的

矩阵的秩

矩阵的秩(Rank)是其行向量的最大线性无关组的数量
从几何角度来看,矩阵的秩表示由矩阵的行向量生成的向量空间的维数,对于一个 3 × 3 3\times3 3×3的矩阵:

  • 如果其秩为 3,表示其行向量是三维空间的基,可以生成整个三维空间
  • 如果秩为 2,表示行向量位于同一平面,且可以生成一个二维平面
  • 如果秩为 1,表示所有行向量都在同一条直线上

在这里插入图片描述

对于方阵,如果其行列式不为零,则该矩阵是满秩矩阵,即秩等于矩阵的阶数。反之,如果行列式为零,则矩阵的秩小于其阶数

最高阶非零子式

一个 k × k k\times k k×k子式是从矩阵中选取 k k k行和 k k k列形成的一个 k × k k\times k k×k方阵的行列式
最高阶非零子式是指在所有非零子式中,阶数最高的那个子式
假设有一个 3 × 3 3\times 3 3×3矩阵: A = ( 1 2 3 4 5 6 7 8 9 ) A=\begin{pmatrix}1&2&3\\4&5&6\\7&8&9\end{pmatrix} A= 147258369
在这里插入图片描述

正定矩阵

正定矩阵是一种特殊的实对称矩阵
实对称矩阵:矩阵的转置等于其自身的矩阵,对于任意 i i i j j j,其第 i i i行第 j j j列的元素等于第 j j j行第 i i i列的元素
一个实对称矩阵 A A A 被称为正定的,如果对于任意非零向量 x x x,都有 x T A x > 0 x^TAx>0 xTAx>0
一个实对称矩阵 A A A被称为半正定的,如果对于任意非零向量 x x x,都有 x T A x ≥ 0 x^TAx\geq0 xTAx0

正交矩阵

正交矩阵的逆矩阵和转置矩阵是相同的
一个正交矩阵 Q Q Q满足下列条件:

  • 它是一个方阵(即行数等于列数)
  • 它的每一列都是单位向量,并且相互正交

正交基

一个向量组 { u 1 , u 2 , … , u n } \{\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_n\} {u1,u2,,un}是正交基,如果组内的任意两个向量都是正交的,即 u i ⋅ u j = 0 \mathbf{u}_{i}\cdot\mathbf{u}_{j}=0 uiuj=0(对于所有 i ≠ j i\neq j i=j),如果这些向量还都是单位向量,则称它们是正交规范基
在三维空间中,标准基向量 { e 1 , e 2 , e 3 } \{\mathbf{e}_1,\mathbf{e}_2,\mathbf{e}_3\} {e1,e2,e3}是一个正交规范基: e 1 = ( 1 , 0 , 0 ) , e 2 = ( 0 , 1 , 0 ) , e 3 = ( 0 , 0 , 1 ) \mathbf{e}_1=(1,0,0),\quad\mathbf{e}_2=(0,1,0),\quad\mathbf{e}_3=(0,0,1) e1=(1,0,0),e2=(0,1,0),e3=(0,0,1)

逆矩阵

假如说,矩阵 A A A是逆时针旋转90°的变换,则 A − 1 A^{-1} A1是顺时针旋转90°的变换
如果矩阵 A A A可逆,则 A − 1 = A ∗ ∣ ∣ A ∣ ∣ A^{-1}=\frac{A^{*}}{||A||} A1=∣∣A∣∣A ∣ ∣ A ∣ ∣ = det ⁡ ( A ) ||A||=\det(A) ∣∣A∣∣=det(A),即矩阵的行列式)
在这里插入图片描述

伴随矩阵

伴随矩阵 A ∗ A^{*} A
余子式: A A A关于第 i i i行第 j j j列的余子式(记作 M i j M_{ij} Mij)是去掉 A A A的第 i i i行第 j j j列之后得到的 ( n − 1 ) × ( n − 1 ) (n-1)\times (n-1) (n1)×(n1)矩阵的行列式
代数余子式: A A A关于第 i i i行第 j j j列的代数余子式(记作 C i j C_{ij} Cij)为 ( − 1 ) i + j M i j (-1)^{i+j}M_{ij} (1)i+jMij
余子矩阵: A A A的余子矩阵是一个 n × n n\times n n×n的矩阵 C C C,使得第 i i i行第 j j j列的元素是 A A A关于第 i i i行第 j j j列的代数余子式
伴随矩阵:矩阵 A A A的伴随矩阵是 A A A的余子矩阵的转置矩阵

奇异值分解

特征分解只适用于方阵,奇异值分解SVD适用于任意矩阵分解
从相似对角化的的定义可以看到,我们可以把一个复杂的矩阵 A A A变成一个很简单的对角矩阵,而这个对角矩阵也同样保留了原来矩阵的特征,且变换的矩阵 P P P就是 A A A的特征向量组成的矩阵
但是注意,不是每一个矩阵都能与对角矩阵相似,首先注意到 P P P必须是可逆的,而 P P P又是特征向量组成 ⇒ \Rightarrow 当且仅当 A A A n n n个线性无关的特征向量时, A A A才能相似对角化
奇异值分解就像是把一个复杂的玩具分解成几个更简单的小玩具,然后用这些小玩具重新拼装成原来的玩具
假设我们有一个 m × n m\times n m×n的矩阵 A A A,,奇异值分解把它分解成三个矩阵: A = U Σ V T A=U\Sigma V^{T} A=UΣVT

  • 矩阵 U U U m × m m\times m m×m的正交矩阵,其中的列向量 u 1 ⃗ , u 2 ⃗ , … , u m ⃗ \vec{\mathrm{u}_1},\vec{\mathrm{u}_2},\ldots,\vec{\mathrm{u}_m} u1 ,u2 ,,um A A T AA^T AAT的特征向量,称为矩阵 A A A的左奇异向量
  • 矩阵数学 Σ \Sigma Σ m × n m\times n m×n的矩阵,除了主对角线上的元素以外全为0,主对角线上的元素 σ i \sigma_i σi称为奇异值, σ i = λ i \sigma_{\mathrm{i}}=\sqrt{\lambda_{\mathrm{i}}} σi=λi λ i \lambda_i λi A A T AA^T AAT的特征值
  • 矩阵 V T V^T VT n × n n\times n n×n的正交矩阵,其中的列向量 v ⃗ 1 , v ⃗ 2 , … , v ⃗ m \vec{\mathrm{v}}_{1} , \vec{\mathrm{v}}_{2} ,\ldots, \vec{\mathrm{v}}_{\mathrm{m}} v 1,v 2,,v m A T A A^TA ATA的特征向量,称为矩阵 A A A的右奇异向量
    在这里插入图片描述

奇异值在矩阵中是按照从大到小排列,而且奇异值的减少特别的快,在很多情况下,前10%甚至1%的奇异值的和就占了全部的奇异值之和的99%以上的比例。也就是说,我们可以用最大的k个的奇异值和对应的左右奇异向量来近似描述矩阵。也就是说: A m × n = U m × m Σ m × n V n × n T ≈ U m × k Σ k × k V k × n T \mathrm A_{\mathrm m\times\mathrm n}=\mathrm U_{\mathrm m\times\mathrm m}\Sigma_{\mathrm m\times\mathrm n}\mathrm V_{\mathrm n\times\mathrm n}^{\mathrm T}\approx\mathrm U_{\mathrm m\times\mathrm k}\Sigma_{\mathrm k\times\mathrm k}\mathrm V_{\mathrm k\times\mathrm n}^{\mathrm T} Am×n=Um×mΣm×nVn×nTUm×kΣk×kVk×nT,其中,k是一个远小于m、n的数。SVD具有的这种特性可以用于PCA降维、数据压缩和去噪等

A A T AA^T AAT是对称矩阵

图片: https://uploader.shimo.im/f/c5V2mrsgMChsaFuk.png!thumbnail?accessToken=eyJhbGciOiJIUzI1NiIsImtpZCI6ImRlZmF1bHQiLCJ0eXAiOiJKV1QifQ.eyJleHAiOjE3MTk4ODU0MjAsImZpbGVHVUlEIjoiS3JrRWxyMUJiUnRMNURxSiIsImlhdCI6MTcxOTg4NTEyMCwiaXNzIjoidXBsb2FkZXJfYWNjZXNzX3Jlc291cmNlIiwidXNlcklkIjo4NTQwNzQ2NX0.U31W-bYVKSEvhx4cIGEzrEarFUCl2iM1kBdgD4OtL-c

主成分分析

假设我们有一组二维数据 ( x , y ) (x,y) (x,y),它的分布如下:
在这里插入图片描述

可以看到,数据在x轴上的变化大,而在y轴变化小,变化小意味着数据在这个特征上没有太大的差异,因此它包含的信息就比较少,那么我们就可以认为它是不重要的或者是噪音,从而可以直接将这个维度上的数据舍去,只用x轴上的数据来代替
那么假如数据是这样分布的呢?
在这里插入图片描述

这个图我们就不太好看出到底是谁比较重要了,因为x和y变化都比较大,那么就不能降维了吗?非也,假如我们旋转一下坐标系
在这里插入图片描述

从这个例子也可以看到,数据本身的具体数值其实是不重要的,重要的是数据之间的关系,数据的整体分布。原来的数据是在 E E E坐标系下,然后我们换了一个坐标系来表示,本质上相当于对数据进行了一次正交变换(从数学公式看),在新的坐标系下,我们能更清楚的看到数据的特点
PCA的目标是将原始数据转换到一个新的坐标系中,这个新坐标系的轴(主成分)是数据方差最大的方向
主成分是在数据集中找到方差最大的方向(即主成分),然后将数据投影到这些方向上
方差最大化:每个主成分方向上数据的方差最大,这意味着这个方向上数据分布最广,包含最多的信息
正交性:不同主成分之间是相互正交的,即它们彼此垂直且不相关
PCA的步骤:

  1. 数据标准化:将每个特征的均值变为零,方差变为一,确保每个特征对主成分的贡献是均衡的 ⇒ \Rightarrow 标准化数据 = X − μ σ \text{标准化数据}=\frac{X-\mu}\sigma 标准化数据=σXμ
  2. 计算协方差矩阵:协方差矩阵描述了不同特征之间的线性关系 ⇒ \Rightarrow Σ = 1 n − 1 X T X \Sigma=\frac{1}{n-1}X^TX Σ=n11XTX,其中, Σ \Sigma Σ是协方差矩阵, X X X是标准化后的数据矩阵, n n n是样本数量
  3. 特征值分解:对协方差矩阵进行特征值分解,得到特征值和特征向量 ⇒ \Rightarrow Σ = V Λ V T \Sigma=V\Lambda V^{T} Σ=VΛVT,其中, V V V是特征向量矩阵, Λ \Lambda Λ是对角矩阵,对角线上的元素是特征值
  4. 选择前 k k k个主成分:选择特征值最大的 k k k个特征向量,作为新的特征子空间的基,这些特征向量就是主成分;特征值代表了每个特征向量方向上的方差大小,特征值越大,表示这个方向上的方差越大,包含的信息越多
  5. 变换数据:用选择的 k k k个主成分对原始数据进行变换,得到降维后的数据 Y = X P Y=XP Y=XP,其中, Y Y Y是降维后的数据矩阵, P P P是由选择的 k k k个特征向量构成的矩阵

https://uploader.shimo.im/f/9YTNMHolzXac7pWq.png!thumbnail?accessToken=eyJhbGciOiJIUzI1NiIsImtpZCI6ImRlZmF1bHQiLCJ0eXAiOiJKV1QifQ.eyJleHAiOjE3MTk4ODg0ODYsImZpbGVHVUlEIjoiS3JrRWxyMUJiUnRMNURxSiIsImlhdCI6MTcxOTg4ODE4NiwiaXNzIjoidXBsb2FkZXJfYWNjZXNzX3Jlc291cmNlIiwidXNlcklkIjo4NTQwNzQ2NX0.6y6m4pk8F7yuMELljgGLqgbchU77T6jMNA3eLvM2PlA

参考文献
1、ChatGPT3.5、ChatGPT4.0、ChatGPT4o
2、概率分布介绍—泊松分布:https://blog.csdn.net/weixin_44633882/article/details/120313676
3、相关系数——皮尔逊相关系数:https://blog.csdn.net/MoreAction_/article/details/106195689
4、《线性代数》教学视频 宋浩老师:https://www.bilibili.com/video/BV1aW411Q7x1?p=1&vd_source=8469f059ce75462e1674032ec0bfc23a
5、一文读懂特征值分解EVD与奇异值分解SVD:https://blog.csdn.net/MoreAction_/article/details/107318158
6、一文让你彻底搞懂主成成分分析PCA的原理及代码实现:https://blog.csdn.net/MoreAction_/article/details/107463336

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1889486.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

彻底掌握页面白屏检测

前言 在日常的前端开发中&#xff0c;白屏几乎是每个前端开发者都会遇到的问题。白屏问题严重影响了用户体验。当用户访问一个页面时&#xff0c;如果页面长时间处于白屏状态&#xff0c;用户可能会认为页面出现了问题&#xff0c;从而选择离开。这对于任何一个网站都是不利的…

为什么要在成像应用中使用图像采集卡?

达到最大产量是工业和工厂自动化的关键标准之一。提高传感器分辨率和帧速率有助于实现这一目标&#xff0c;但也使带宽达到极限&#xff0c;并提出了新的传输问题。当前高带宽接口(如10GigE、相机直接与PC连接和嵌入式系统)的实现促使成像应用的许多用户询问如何以最佳配置最优…

idea部署war包成功,但是接口404

场景 项目结构 xxx-xxx-app xxx-xxx-service xxx-xxx-webappapp/webapp依赖service&#xff0c;service中写了各种api&#xff0c;先别管它合不合理&#xff0c;正式环境用webapp发布。 本地配置tomcat启动&#xff0c;但是发现每次部署成功&#xff0c;但是service中的接口…

常见的九种二极管

常见的九种二极管 文章目录 常见的九种二极管1、普通二极管2、光电二极管&#xff08;LED&#xff09;3、变容二级管4、发光二极管5、恒流二极管6、快恢复二极管&#xff08;FRD&#xff09;7、肖特基二极管8、瞬态电压抑制二极管(TVS)9、齐纳二极管&#xff08;稳压&#xff0…

声音音频文件波谱可视化展示

1、简单图形展示 import matplotlib.pyplot as plt import numpy as np import torch import torchaudiodef plot_waveform(waveform, sample_rate, title"Waveform", xlimNone, ylimNone):waveform waveform.numpy()num_channels, num_frames waveform.shapetime…

基于用户的协同过滤算法

目录 原理&#xff1a; 计算相似度&#xff1a; 步骤&#xff1a; 计算方法&#xff1a;Jaccard相似系数、余弦相似度。 推荐 原理&#xff1a; 先“找到相似用户”&#xff0c;再“找到他们喜欢的物品”--->人以群分。即&#xff0c;给用户推荐“和他兴趣相似的其他用…

selenium,在元素块下查找条件元素

def get_norms_ele_text(self):elementsself.get_norms_elements()locBy.CSS_SELECTOR,"div.sku-select-row-label"by loc[0] # 获取By类型&#xff0c;例如By.CSS_SELECTORvalue loc[1] # 获取具体的CSS选择器字符串&#xff0c;例如"div.sku-select-row-l…

【C++】vector的底层原理及实现

文章目录 vector的底层结构迭代器容量操作size()capacity()reserve()resize() 默认成员函数构造无参构造函数带参构造函数 析构拷贝构造赋值重载 operator[ ]插入删除操作insert()任意位置插入erase()任意位置删除push_back()尾插pop_back()尾删 vector的底层结构 我们的目的不…

数据万象推出智能检索MetaInsight,现已开启限时公测

海量文件的分析统计一直是对象存储COS的热点需求&#xff0c;伴随AIGC飞速迭代发展&#xff0c;在众多不同模态素材的海洋中&#xff0c;用户也急需更高效地管理和利用多媒体内容&#xff0c;打破传统搜索的桎梏。 数据万象推出的智能检索 MetaInsight 服务将多模态检索与元数…

第十四章 Qt绘图

目录 一、Qt绘图基础 1、主要的类 2、paintEvent 事件 二、坐标体系 三、画笔 1、画笔的常用接口 2、画笔样式 3、画笔画线时的端点样式 4、画笔画线时,连接点的样式 5、实例 四、画刷 1、画刷的填充样式 2、实例 五、基本图形的绘制 1、画矩形 drawRect 2、画…

miniconda3 安装jupyter notebook并配置网络访问

由于服务器安装的miniconda3&#xff0c;无jupyter notebook&#xff0c;所以手工安装jupyter notebook 1 先conda 安装相关包 在base 环境下 conda install ipython conda install jupyter notebook 2 生成配置文件 jupyter notebook --generate-config Writing defaul…

Coze终于顶不住了?开始收费了

&#x1f914;各位老铁都知道&#xff0c;之前Coze以免费出圈&#xff0c;香碰碰&#xff0c;字节一个月几个亿补贴用户。现在终于顶不住了&#xff0c;开始收费了&#xff01; 我们来看看具体情况吧&#xff01; &#x1f4b8;收费情况一览 目前国内版本还没有开始收费&#x…

CesiumJS【Basic】- #054 绘制渐变填充多边形(Entity方式)-使用shader

文章目录 绘制渐变填充多边形(Entity方式)-使用shader1 目标2 代码2.1 main.ts绘制渐变填充多边形(Entity方式)-使用shader 1 目标 使用Entity方式绘制绘制渐变填充多边形 - 使用shader 2 代码 2.1 main.ts import * as Cesium from cesium;const viewer = new Cesium…

迅睿CMS 后端配置项没有正常加载,上传插件不能正常使用

首先&#xff0c;尝试迅睿CMS官方提供的【百度编辑器问题汇总】解决方案来解决你的问题。你可以访问这个链接&#xff1a;官方解决方案。 如果按照【百度编辑器问题汇总】解决方案操作后&#xff0c;依然遇到“后端配置项没有正常加载&#xff0c;上传插件不能正常使用”的问题…

windows重装系统

一、下载Ventoy工具&#xff0c;制作启动盘 官网地址&#xff1a;https://www.ventoy.net/cn/download.html 电脑插入用来制作系统盘的U盘&#xff0c;建议大小在8G以上。 双击打开刚解压出来的Ventoy2Disk.exe文件。打开界面如图&#xff1a; 确认U盘&#xff0c;如图&am…

Linux_管道通信

目录 一、匿名管道 1、介绍进程间通信 2、理解管道 3、管道通信 4、用户角度看匿名管道 5、内核角度看匿名管道 6、代码实现匿名管道 6.1 创建子进程 6.2 实现通信 7、匿名管道阻塞情况 8、匿名管道的读写原子性 二、命名管道 1、命名管道 1.1 命名管道通信 …

VoiceCraft—— 业界最高水平的自然语音合成语言模型

VoiceCraft: 实现语音编辑和合成的 SOTA 论文地址&#xff1a;https://arxiv.org/html/2403.16973v1 源码地址&#xff1a;https://github.com/jasonppy/voicecraft 本文介绍VoiceCraft 的开发情况&#xff0c;它在语音编辑和零点语音合成 (TTS) 方面都实现了 SOTA。在本文中…

如何压缩jpg图片的大小?关于缩小jpg图片的四种方法

如何压缩jpg图片的大小&#xff1f;压缩JPG图片大小是一项常见的技术&#xff0c;用来优化图片以适应不同的应用需求。无论是为了在网页上提高加载速度、减少存储空间占用&#xff0c;还是为了便于通过电子邮件或社交媒体分享&#xff0c;压缩jpg图片都是必不可少的步骤。这种技…

AIoTedge:智能边缘计算平台

随着物联网(IoT)和人工智能(AI)技术的飞速发展&#xff0c;AIoT&#xff08;人工智能物联网&#xff09;已成为推动智能化转型的关键力量。AIoT Edge作为这一领域的创新平台&#xff0c;通过边缘计算技术&#xff0c;为企业提供了一个高效、灵活且安全的解决方案。 边云协同架构…

Java 7新特性深度解析:提升效率与功能

文章目录 Java 7新特性深度解析&#xff1a;提升效率与功能一、Switch中添加对String类型的支持二、数字字面量的改进三、异常处理&#xff08;捕获多个异常&#xff09;四、增强泛型推断五、NIO2.0&#xff08;AIO&#xff09;新IO的支持六、SR292与InvokeDynamic七、Path接口…