MySQL详解(三)——高级 1.0

news2024/11/24 16:51:23

MySQL高级

utf8只支持每个字符最多三个字节,而真正的 UTF-8 是每个字符最多四个字节

MySQL 的这个bug一直没有被修复,他们在 2010 年发布了一个叫作“utf8mb4”的字符集,绕过了这个问题。

MySQL优点

  • Mysql是开源的
  • Mysql是可以定制的,采用GPL协议,可修改源码来开发自己的Mysql系统
  • Mysql支持大型的数据库,可以记录上千万记录的大型数据库
  • Mysql使用标准的SQL数据语言
  • Mysql可以允许在多个系统上,并且支持多种语言

MySQL的sql_mode合理设置

sql_mode是个很容易被忽视的变量,默认值是空值,在这种设置下是可以允许一些非法操作的,比如允许一些非法数据的插入。在生产环境必须将这个值设置为严格模式,所以开发、测试环境的数据库也必须要设置,这样在开发测试阶段就可以发现问题。

show variables like ‘sql_mode’;

利用show profile 查看sql的执行周期:

修改配置文件/etc/my.cnf
新增一行:query_cache_type=1
重启mysql

先开启 show variables like ‘%profiling%’;
set profiling=1;

select * from xxx ;

show profiles; #显示最近的几次查询

show profile cpu,block io for query 编号 #查看程序的执行步骤

MySQL逻辑架构介绍

和其它数据库相比,MySQL有点与众不同,它的架构可以在多种不同场景中应用并发挥良好作用。主要体现在存储引擎的架构上,插件式的存储引擎架构将查询处理和其它的系统任务以及数据的存储提取相分离。这种架构可以根据业务的需求和实际需要选择合适的存储引擎。

缓存用于读数据,缓冲用于写数据。

在这里插入图片描述

1.连接层
最上层是一些客户端和连接服务,包含本地sock通信和大多数基于客户端/服务端工具实现的类似于tcp/ip的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程池的概念,为通过认证安全接入的客户端提供线程。同样在该层上可以实现基于SSL的安全链接。服务器也会为安全接入的每个客户端验证它所具有的操作权限。

2.服务层

2.1 Management Serveices & Utilities: 系统管理和控制工具
2.2 SQL Interface: SQL接口
接受用户的SQL命令,并且返回用户需要查询的结果。比如select from就是调用SQL Interface
2.3 Parser: 解析器
SQL命令传递到解析器的时候会被解析器验证和解析。

2.4 Optimizer: 查询优化器。
SQL语句在查询之前会使用查询优化器对查询进行优化。
用一个例子就可以理解: select uid,name from user where gender= 1;
优化器来决定先投影还是先过滤。

2.5 Cache和Buffer: 查询缓存。
如果查询缓存有命中的查询结果,查询语句就可以直接去查询缓存中取数据。q
这个缓存机制是由一系列小缓存组成的。比如表缓存,记录缓存,key缓存,权限缓存等

3.引擎层
存储引擎层,存储引擎真正的负责了MySQL中数据的存储和提取,服务器通过API与存储引擎进行通信。不同的存储引擎具有的功能不同,这样我们可以根据自己的实际需要进行选取。后面介绍MyISAM和InnoDB

4.存储层
数据存储层,主要是将数据存储在运行于裸设备的文件系统之上,并完成与存储引擎的交互。

查询流程图:

首先,mysql的查询流程大致是:
mysql客户端通过协议与mysql服务器建立连接,发送查询语句,先检查查询缓存,如果命中,直接返回结果,否则进行语句解析,也就是说,在解析查询之前,服务器会先访问查询缓存(query cache)——它存储SELECT语句以及相应的查询结果集。如果某个查询结果已经位于缓存中,服务器就不会再对查询进行解析、优化、以及执行。它仅仅将缓存中的结果返回给用户即可,这将大大提高系统的性能。

语法解析器和预处理:首先mysql通过关键字将SQL语句进行解析,并生成一颗对应的“解析树”。mysql解析器将使用mysql语法规则验证和解析查询;预处理器则根据一些mysql规则进一步检查解析数是否合法。

查询优化器当解析树被认为是合法的了,并且由优化器将其转化成执行计划。一条查询可以有很多种执行方式,最后都返回相同的结果。优化器的作用就是找到这其中最好的执行计划。

然后,mysql默认使用的BTREE索引,并且一个大致方向是:无论怎么折腾sql,至少在目前来说,mysql最多只用到表中的一个索引。

执行顺序:

在这里插入图片描述

MySQL存储引擎

如何用命令查看
#看你的mysql现在已提供什么存储引擎:
mysql> show engines;

#看你的mysql当前默认的存储引擎:
mysql> show variables like ‘%storage_engine%’;

企业公司不设计外键,效率低

存储引擎,MyISAM、InnoDB

表锁不会死锁,行锁会死锁

对比项MyISAMInnoDB
外键不支持支持
事务不支持支持
行表锁表锁,即是操作一条记录也会锁住整个表,不适合高并发的操作行锁,操作时只锁某一行,不对其他行有影响,适合高并发操作
缓存只缓存索引,不缓存真实数据不仅缓存索引还要缓存真实数据,对内存要求较高,而且内存大小对性能有决定性的影响
关注点节省资源、消耗少、简单业务并发写、事务、更大资源
默认安装truetrue
默认使用falsetrue
自带系统表使用truefalse

1、InnoDB存储引擎
InnoDB是MySQL的默认事务型引擎,它被设计用来处理大量的短期(short-lived)事务。除非有非常特别的原因需要使用其他的存储引擎,否则应该优先考虑InnoDB引擎。

2、MyISAM存储引擎
MyISAM提供了大量的特性,包括全文索引、压缩、空间函数(GIS)等,但MyISAM不支持事务和行级锁,有一个毫无疑问的缺陷就是崩溃后无法安全恢复。

3、Archive引擎
Archive档案存储引擎只支持INSERT和SELECT操作,在MySQL5.1之前不支持索引。
Archive表适合日志和数据采集类应用。
根据英文的测试结论来看,Archive表比MyISAM表要小大约75%,比支持事务处理的InnoDB表小大约83%。

4、Blackhole引擎
Blackhole引擎没有实现任何存储机制,它会丢弃所有插入的数据,不做任何保存。但服务器会记录Blackhole表的日志,所以可以用于复制数据到备库,或者简单地记录到日志。但这种应用方式会碰到很多问题,因此并不推荐。

5、CSV引擎
CSV引擎可以将普通的CSV文件作为MySQL的表来处理,但不支持索引。
CSV引擎可以作为一种数据交换的机制,非常有用。
CSV存储的数据直接可以在操作系统里,用文本编辑器,或者excel读取。

6、Memory引擎
如果需要快速地访问数据,并且这些数据不会被修改,重启以后丢失也没有关系,那么使用Memory表是非常有用。Memory表至少比MyISAM表要快一个数量级。

7、Federated引擎
Federated引擎是访问其他MySQL服务器的一个代理,尽管该引擎看起来提供了一种很好的跨服务器的灵活性,但也经常带来问题,因此默认是禁用的。

索引优化分析

join on

在这里插入图片描述

1   所有有门派的人员信息 
( A、B两表共有)
 select * from t_emp a inner join t_dept b on a.deptId = b.id; 
 
2   列出所有用户,并显示其机构信息 
 (A的全集)
 select * from t_emp a left join t_dept b on a.deptId = b.id; 
 
3   列出所有门派 
(B的全集)
 select * from  t_dept  b  
 
4   所有不入门派的人员 
(A的独有)
select * from t_emp a left join t_dept b on a.deptId = b.id where b.id is null; 
 
5   所有没人入的门派 
(B的独有)
 select * from t_dept b left join  t_emp a on a.deptId = b.id where a.deptId is null;  
 
6    列出所有人员和机构的对照关系
(AB全有)  union两边的字段数必须相同,UNION All不会去重
#MySQL Full Join的实现 因为MySQL不支持FULL JOIN,下面是替代方法
#left join + union(可去除重复数据)+ right join
 
SELECT * FROM t_emp A LEFT JOIN t_dept B ON A.deptId = B.id
UNION
SELECT * FROM t_emp A RIGHT JOIN t_dept B ON A.deptId = B.id
 
7    列出所有没入派的人员和没人入的门派
(A的独有+B的独有)
SELECT * FROM t_emp A LEFT JOIN t_dept B ON A.deptId = B.id WHERE B.`id` IS NULL
UNION
SELECT * FROM t_emp A RIGHT JOIN t_dept B ON A.deptId = B.id WHERE A.`deptId` IS NULL;

MySQL官方对索引的定义为:**索引(Index)是帮助MySQL高效获取数据的数据结构。**可以得到索引的本质:索引是数据结构。

索引的目的在于提高查询效率,可以类比字典,如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从上往下找到y字母,再找到剩下的sql。

在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。下图就是一种可能的索引方式示例:

在这里插入图片描述

右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在一定的复杂度内获取到相应数据,从而快速的检索出符合条件的记录。

数据本身之外,数据库还维护着一个满足特定查找算法的数据结构,这些数据结构以某种方式指向数据,这样就可以在这些数据结构的基础上实现高级查找算法,这种数据结构就是索引。

一般来说索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。

优缺点

优:

类似书目索引,提高数据检索的效率,降低数据库的IO成本

通过索引列对数据进行排序,降低数据排序的成本,降低了CPU的消耗

缺:

虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件每次更新添加了索引列的字段,都会调整随更新所带来的键值变化后的索引信息

实际上索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录,所以索引列也是要占用空间的

mysql索引结构

平衡树:BTree索引、B+Tree索引

mysql是的索引结构是B+Tree索引

BTree

在这里插入图片描述

【初始化介绍】
一颗b树,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示,包括索引值和指向数据的指针)和向下指针(黄色所示)。
如磁盘块1包含数据项17和35,包含指针P1、P2、P3,
P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。
真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。
非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

【查找过程】
如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO,在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。

真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

B+Tree

在这里插入图片描述

索引数据项(深蓝色所示)和向下指针(黄色所示),没有指向数据的指针。指向数据的指针在叶子结点。

时间复杂度:

在这里插入图片描述

同一问题可用不同算法解决,而一个算法的质量优劣将影响到算法乃至程序的效率。算法分析的目的在于选择合适算法和改进算法。

B+Tree与B-Tree 的区别

1)B-树的关键字和记录指针是放在一起的,叶子节点可以看作外部节点,不包含任何信息;B+树的非叶子节点中只有关键字和指向下一个节点的索引,记录指针只放在叶子节点中。

2)在B-树中,越靠近根节点的记录查找时间越快,只要找到关键字即可确定记录的存在;而B+树中每个记录的查找时间基本是一样的,都需要从根节点走到叶子节点,而且在叶子节点中还要再比较关键字。从这个角度看B-树的性能好像要比B+树好,而在实际应用中却是B+树的性能要好些。因为B+树的非叶子节点不存放指向数据的指针,这样每个节点可容纳的元素个数比B-树多,树高比B-树小,这样带来的好处是减少磁盘访问次数。尽管B+树找到一个记录所需的比较次数要比B-树多,但是一次磁盘访问的时间相当于成百上千次内存比较的时间,因此实际中B+树的性能可能还会好些,而且B+树的叶子节点使用指针连接在一起,方便顺序遍历(例如查看一个目录下的所有文件,一个表中的所有记录等),这也是很多数据库和文件系统使用B+树的缘故。
 
思考:为什么说B+树比B-树更适合实际应用中操作系统的文件索引和数据库索引?

  1. B+树的磁盘读写代价更低

B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。
2) B+树的查询效率更加稳定

由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

聚簇索引与非聚簇索引

聚簇索引并不是一种单独的索引类型,而是一种数据存储方式。术语‘聚簇’表示数据行和相邻的键值聚簇的存储在一起。

如下图,左侧的索引就是聚簇索引,因为数据行在磁盘的排列和索引排序保持一致。

在这里插入图片描述

聚簇索引的好处:
按照聚簇索引排列顺序,查询显示一定范围数据的时候,由于数据都是紧密相连,数据库不用从多个数据块中提取数据,所以节省了大量的io操作。

聚簇索引的限制:
**对于mysql数据库目前只有innodb数据引擎支持聚簇索引,而Myisam并不支持聚簇索引。**由于数据物理存储排序方式只能有一种,所以每个Mysql的表只能有一个聚簇索引。一般情况下就是该表的主键。为了充分利用聚簇索引的聚簇的特性,所以innodb表的主键列尽量选用有序的顺序id,而不建议用无序的id,比如uuid这种。Mysql中主键都是聚簇索引,其他索引都不是,所以Mysql主键最好是有序的。

mysql索引分类

group by内容有排序加分组比order by更耗性能。

  • 单值索引

    即一个索引只包含单个列,一个表可以有多个单列索引

    随表一起建索引:

    CREATE TABLE customer (
      id INT(10) UNSIGNED  AUTO_INCREMENT ,
      customer_no VARCHAR(200),customer_name VARCHAR(200),
      PRIMARY KEY(id),
      KEY (customer_name)
    );
    

    单独建单值索引:
    CREATE INDEX idx_customer_name ON customer(customer_name);

    删除索引:
    DROP INDEX idx_customer_name on customer;

  • 唯一索引

    索引列的值必须唯一,但允许有空值

    随表一起建索引:

    CREATE TABLE customer (
      id INT(10) UNSIGNED  AUTO_INCREMENT ,
      customer_no VARCHAR(200),customer_name VARCHAR(200),
      PRIMARY KEY(id),
      KEY (customer_name),
      UNIQUE (customer_no)
    );
    

    单独建唯一索引:
    CREATE UNIQUE INDEX idx_customer_no ON customer(customer_no);

    删除索引:
    DROP INDEX idx_customer_no on customer ;

  • 主键索引

    设定为主键后数据库会自动建立索引,innodb为聚簇索引

    随表一起建索引:

    CREATE TABLE customer (
      id INT(10) UNSIGNED  AUTO_INCREMENT ,
      customer_no VARCHAR(200),customer_name VARCHAR(200),
      PRIMARY KEY(id) 
    );
    
    CREATE TABLE customer2 (
      id INT(10) UNSIGNED   ,
      customer_no VARCHAR(200),customer_name VARCHAR(200),
      PRIMARY KEY(id) 
    );
    

    单独建主键索引:
    ALTER TABLE customer add PRIMARY KEY customer(customer_no);

    删除建主键索引:
    ALTER TABLE customer drop PRIMARY KEY ;

    修改建主键索引:
    必须先删除掉(drop)原索引,再新建(add)索引

  • 复合索引

    即一个索引包含多个列

    随表一起建索引:

    CREATE TABLE customer (
      id INT(10) UNSIGNED  AUTO_INCREMENT ,
      customer_no VARCHAR(200),customer_name VARCHAR(200),
      PRIMARY KEY(id),
      KEY (customer_name),
      UNIQUE (customer_name),
      KEY (customer_no,customer_name)
    );
    

    单独建索引:
    CREATE INDEX idx_no_name ON customer(customer_no,customer_name);

    删除索引:
    DROP INDEX idx_no_name on customer ;

  • 基本语法

    创建:CREATE [UNIQUE ] INDEX [indexName] ON table_name(column))

    删除:DROP INDEX [indexName] ON mytable;

    查看:SHOW INDEX FROM table_name/G

    使用ALTER命令:

    有四种方式来添加数据表的索引:
    ALTER TABLE tbl_name ADD PRIMARY KEY (column_list): 该语句添加一个主键,这意味着索引值必须是唯一的,且不能为NULL。

    ALTER TABLE tbl_name ADD UNIQUE index_name (column_list): 这条语句创建索引的值必须是唯一的(除了NULL外,NULL可能会出现多次)。

    ALTER TABLE tbl_name ADD INDEX index_name (column_list): 添加普通索引,索引值可出现多次。

    ALTER TABLE tbl_name ADD FULLTEXT index_name (column_list):该语句指定了索引为 FULLTEXT ,用于全文索引。

查看表的索引:

show index from 表

在这里插入图片描述

索引场景

哪些情况需要创建索引:

  • 主键自动建立唯一索引
  • 频繁作为查询条件的字段应该创建索引
  • 查询中与其它表关联的字段,外键关系建立索引
  • 单键/组合索引的选择问题, 组合索引性价比更高(多个单值索引,Mysql选择其中最优的索引进行使用)
  • 查询中排序的字段,排序字段若通过索引去访问将大大提高排序速度
  • 查询中统计或者分组字段(Group By更伤性能,Group By包含了Order By)

哪些情况不要创建索引:

  • 表记录太少
  • 经常增删改的表或者字段:Why:提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件
  • Where条件里用不到的字段不创建索引
  • 过滤性不好的不适合建索引

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/188938.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

CDN的那些事

CDN的那些事一、前言二、基础配置三、访问控制四、缓存配置五、HTTPS配置六、高级配置(最重点来了)七、结语一、前言 大家好,我是尝试中成长的站长,前段时间,群友的cdn被刷爆了,这就引起了我的恐慌&#x…

读书笔记:神经网络加法层与乘法层的实现及应用 buy_apple_orange.py ← 斋藤康毅

“层”是神经网络中功能的单位。通常把神经网络的“层”实现为一个类。“层”的实现中有两个共通的方法 forward() 和 backward()。forward() 对应正向传播,backward() 对应反向传播。加法结点的反向传播将上游的值原封不动地输出到下游,乘法结点的反向传…

第2章:使用CSS定义样式

在前一章中,我们研究了Java代码的不同片段。 在本章中,我们将对每个示例使用相同的代码段: public void createPdf(String html, String dest) throws IOException {HtmlConverter.convertToPdf(html, new FileOutputStream(dest)); } 我们不看Java代码的不同片段,而是看…

数据分析-深度学习Pytorch Day13

单层感知机和多层感知机(MLP)是最基础的神经网络结构。将卷积操作创新的加入到神经网络结构形成了卷积神经网络,卷积神经网络给现代人工智能注入了活力。感知机网络和卷积网络(CNN)都属于前馈型网络(FeedForward Network)。单层感知机是二分类的线性分类模型&#x…

MT1010-M1016(java版)

MT1010输入和输出字符型数据难度:青铜0时间限制:1秒巴占用内存:64M★收藏△报错请编写一个简单程序,用户输入2个的字符型数据存储在变量中,并分别以字符形式和整数形式输出在屏幕上。格式输入格式:2个的字符…

Go语言DDD实战初级篇

导读 领域驱动设计(DDD)最简洁的描述可能是:如何在明确的限界上下文中创建通用语言的模型。通过 DDD思想设计开发的软件,在领域专家、开发者和软件本身之间不存在“翻译”,三者通过在限界上下文下的通用语言直接表示。而这个系列则是我们团队…

交换机——VLAN原理和基本配置

VLAN原理和配置VLAN的三种端口类型Access:接入链路类型(一般使用:交换机与PC)Trunk:干道链路类型(一般使用:交换机与交换机)Hybrid在这里,我们只使用和讲解Access和Trunk…

HTML简介

目录 一、HTML基础知识 二、HTML常见标签 注释标签 标题标签 段落标签 常用的转义字符 换行标签 格式化标签 图片标签 超链接标签 表格标签 列表标签 input标签 文本框 密码框 单选框 复选框 普通按钮 选择文件 下拉标签 多行文本输入 无语…

【哈希表】leetcode454.四数相加II(C/C++/Java/Python/Js)

leetcode454.四数相加II1 题目2 思路3 代码3.1 C版本3.2 C版本3.3 Java版本3.4 Python版本3.5 JavaScript版本4 总结需要哈希的地方都能找到map的身影 1 题目 题源链接 给你四个整数数组 nums1、nums2、nums3 和 nums4 ,数组长度都是 n ,请你计算有多少…

C中线程信号控制

一、场景介绍存在三个线程,一个主线程和两个子线程(子线程数量不固定)。为了节省频繁创建销毁线程造成的资源浪费,将这些线程设置为常驻线程。但这样引入了一个新的问题,如何协调这些线程完成工作。主线程内是循环检测…

Webgl实现的天气效果(下雨、下雪)

一、下雨效果如图: 还有一种雨水效果也不错 114 Three.js实现深度遮挡的下雨特效 | 暮志未晚-中文案例网 二、下雪的效果 57 Three.js 使用粒子实现下雪特效 | 暮志未晚-中文案例网 还有一种是通过网页CSS的形式做的2D雪效果 集合在一起的源码: https…

编译原理学习笔记17——语义分析和中间代码生成2

编译原理学习笔记17——语义分析和中间代码生成217.1 赋值语句的翻译17.2数组元素引用的翻译17.3 类型转换17.1 赋值语句的翻译 简单算术表达式及赋值语句 赋值语句生成三地址代码的S-属性文法 赋值语句生成三地址代码的S-属性文法 产生赋值语句三地址代码的翻译模式 产…

你真的了解工厂设计模式吗?(简单工厂模式+工厂方法模式+抽象工厂模式)

工厂解决的问题 客户端在调用是不想判断实例化哪一个类或者实例化的过程过于复杂。在工厂模式中,具体的实现类创建过程对客户端是透明的,客户端不决定具体实例化哪一个类,而是交由“工厂”来实例化。 简单工厂模式 类图 简单工厂模式由三类…

Git GitHub纯新手入门教程

参考视频:Github 新手够用指南 | 全程演示&个人找项目技巧放送_哔哩哔哩_bilibili40 分钟学会 Git | 日常开发全程大放送&个搭配GitHub_哔哩哔哩_bilibiliGit和GitHub分别是什么Git是一个运行在电脑上的版本控制软件(保存代码各个阶段历史记录的…

在使用定时器过程中存在的那些陷阱

在使用定时器的过程中,如果你不了解定时器的一些细节,那么很有可能掉进定时器的一些陷阱里,函数 setTimeout 在时效性上面有很多先天的不足,所以对于一些时间精度要求比较高的需求,应该有针对性地采取一些其他的方案 …

【回眸】牛客网刷刷刷(四)软件工程(续)ZooKeeper字符串链表(专题)

前言 本篇博客为笔者刷客观笔试题时做的一些记录以供以后复习时翻阅,如果能够帮到您是最大的荣幸!如果能给笔者一个三连将感激不尽! 知识点串烧 软件工程专题(续上篇) 有一些可维护特性是相互促进的,如…

【技术美术图形部分】PBR Disney原则的BRDF 次表面散射模型

写在前面 补充去年遗漏下的知识。很多叙述都是参考了众多大佬的文章!因为是作为个人学习总结的博客,所以直接卑微的借鉴过来了,后面会给出所有参考的文章。 另外,放上一个忘了在哪一篇知乎评论里的截图: 说的蛮好。 …

MySQL基础篇笔记

文章目录导入表的问题第3章_最基本的SELECT语句1. SQL语言的规则和规范1) 基本规则2) SQL大小写规范(建议遵守)3) 注释4) 命名规则2. 基本的SELECT语句1) SELECT ... FROM2) 列的别名3) 去除重复行4) 空值参与运算5) 着重号 6) 查询常数3. 显示表结构4. …

贪心算法(基础)

目录 一、什么是贪心? (一)以教室调度问题为例 1. 问题 2. 具体做法如下 3. 因此将在这间教室上如下三堂课 4. 结论 (二)贪心算法介绍 1. 贪心算法一般解题步骤 二、最优装载问题 (一&#xf…

智能驾驶 车牌检测和识别(四)《Android实现车牌检测和识别(可实时车牌识别)》

智能驾驶 车牌检测和识别(四)《Android实现车牌检测和识别(可实时车牌识别)》 目录 智能驾驶 车牌检测和识别(四)《Android实现车牌检测和识别(可实时车牌识别)》 1. 前言 2. 车…