【C++】开源:量化金融计算库QuantLib配置与使用

news2025/2/25 19:17:19

😏★,°:.☆( ̄▽ ̄)/$:.°★ 😏
这篇文章主要介绍量化交易库QuantLib配置与使用。
无专精则不能成,无涉猎则不能通。——梁启超
欢迎来到我的博客,一起学习,共同进步。
喜欢的朋友可以关注一下,下次更新不迷路🥞

文章目录

    • :smirk:1. 项目介绍
    • :blush:2. 环境配置
    • :satisfied:3. 使用说明

😏1. 项目介绍

官网:https://www.quantlib.org/

项目Github地址:https://github.com/lballabio/QuantLib

QuantLib(Quantitative Finance Library)是一个开源的跨平台软件框架,专为量化金融领域设计和开发。它提供了丰富的金融工具和计算功能,用于衍生品定价、风险管理、投资组合管理等多个领域。以下是关于QuantLib的一些主要特点和用途:

1.开源跨平台:QuantLib是完全开源的,可以在不同操作系统上运行,包括Windows、Linux和Mac OS X。这使得它成为量化金融研究和开发的理想工具,能够在不同的环境中使用和定制。

2.丰富的金融工具:QuantLib支持多种金融工具和衍生品的定价和分析,包括利率衍生品(如利率互换、利率期权)、股票衍生品(如期权)、信用衍生品(如信用违约掉期)、外汇衍生品等。

3.数值方法和模型支持:QuantLib提供了广泛的数值方法和模型,用于衍生品定价和风险管理,如蒙特卡洛模拟、有限差分法、解析方法等。它支持的模型包括Black-Scholes模型、Heston模型、Libor Market Model等。

4.投资组合和风险管理:QuantLib能够处理复杂的投资组合和风险管理需求,包括风险测度、对冲分析、压力测试等,为金融机构和量化交易员提供重要的决策支持工具。

5.易于集成和扩展:QuantLib的设计允许用户根据特定需求进行定制和扩展,通过C++编程接口提供了灵活的扩展性,同时也支持Python等编程语言的接口,使得QuantLib能够与其他系统和库集成使用。

😊2. 环境配置

Ubuntu环境安装QuantLib库:

git clone https://github.com/lballabio/QuantLib # 或者下载release版本 1.34
mkdir build && cd build
cmake ..
make
sudo make install

程序g++编译:g++ -o main main.cpp -lQuantLib

😆3. 使用说明

下面是一个简单示例,计算零息债券的定价:

#include <ql/quantlib.hpp>
#include <iostream>

using namespace QuantLib;

int main() {
    // 设置评估日期
    Date today = Date::todaysDate();
    Settings::instance().evaluationDate() = today;

    // 定义债券参数
    Real faceAmount = 1000.0; // 债券面值
    Rate couponRate = 0.05; // 年利率
    Date maturity = today + Period(1, Years); // 到期时间

    // 创建收益率曲线
    Rate marketRate = 0.03; // 市场利率
    Handle<YieldTermStructure> discountCurve(boost::shared_ptr<YieldTermStructure>(
        new FlatForward(today, marketRate, Actual360())));

    // 创建零息债券
    ZeroCouponBond bond(0, NullCalendar(), faceAmount, maturity, Following, 100.0, today);

    // 创建定价引擎并设置参数
    bond.setPricingEngine(boost::shared_ptr<PricingEngine>(
        new DiscountingBondEngine(discountCurve)));

    // 计算债券价格
    Real bondPrice = bond.NPV();
    std::cout << "Zero-coupon bond price: " << bondPrice << std::endl;

    return 0;
}

此外,还有官方示例里的BasketLosses 计算一组金融资产损失示例(看起来还是很复杂的):

/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */

/*!
Copyright (C) 2009 Mark Joshi

This file is part of QuantLib, a free-software/open-source library
for financial quantitative analysts and developers - http://quantlib.org/

QuantLib is free software: you can redistribute it and/or modify it
under the terms of the QuantLib license.  You should have received a
copy of the license along with this program; if not, please email
<quantlib-dev@lists.sf.net>. The license is also available online at
<http://quantlib.org/license.shtml>.

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE.  See the license for more details.
*/

#include <ql/qldefines.hpp>
#if !defined(BOOST_ALL_NO_LIB) && defined(BOOST_MSVC)
#  include <ql/auto_link.hpp>
#endif
#include <ql/models/marketmodels/marketmodel.hpp>
#include <ql/models/marketmodels/accountingengine.hpp>
#include <ql/models/marketmodels/pathwiseaccountingengine.hpp>
#include <ql/models/marketmodels/products/multiproductcomposite.hpp>
#include <ql/models/marketmodels/products/multistep/multistepswap.hpp>
#include <ql/models/marketmodels/products/multistep/callspecifiedmultiproduct.hpp>
#include <ql/models/marketmodels/products/multistep/exerciseadapter.hpp>
#include <ql/models/marketmodels/products/multistep/multistepnothing.hpp>
#include <ql/models/marketmodels/products/multistep/multistepinversefloater.hpp>
#include <ql/models/marketmodels/products/pathwise/pathwiseproductswap.hpp>
#include <ql/models/marketmodels/products/pathwise/pathwiseproductinversefloater.hpp>
#include <ql/models/marketmodels/products/pathwise/pathwiseproductcallspecified.hpp>
#include <ql/models/marketmodels/models/flatvol.hpp>
#include <ql/models/marketmodels/callability/swapratetrigger.hpp>
#include <ql/models/marketmodels/callability/swapbasissystem.hpp>
#include <ql/models/marketmodels/callability/swapforwardbasissystem.hpp>
#include <ql/models/marketmodels/callability/nothingexercisevalue.hpp>
#include <ql/models/marketmodels/callability/collectnodedata.hpp>
#include <ql/models/marketmodels/callability/lsstrategy.hpp>
#include <ql/models/marketmodels/callability/upperboundengine.hpp>
#include <ql/models/marketmodels/correlations/expcorrelations.hpp>
#include <ql/models/marketmodels/browniangenerators/mtbrowniangenerator.hpp>
#include <ql/models/marketmodels/browniangenerators/sobolbrowniangenerator.hpp>
#include <ql/models/marketmodels/evolvers/lognormalfwdratepc.hpp>
#include <ql/models/marketmodels/evolvers/lognormalfwdrateeuler.hpp>
#include <ql/models/marketmodels/pathwisegreeks/bumpinstrumentjacobian.hpp>
#include <ql/models/marketmodels/utilities.hpp>
#include <ql/methods/montecarlo/genericlsregression.hpp>
#include <ql/legacy/libormarketmodels/lmlinexpcorrmodel.hpp>
#include <ql/legacy/libormarketmodels/lmextlinexpvolmodel.hpp>
#include <ql/time/schedule.hpp>
#include <ql/time/calendars/nullcalendar.hpp>
#include <ql/time/daycounters/simpledaycounter.hpp>
#include <ql/pricingengines/blackformula.hpp>
#include <ql/pricingengines/blackcalculator.hpp>
#include <ql/utilities/dataformatters.hpp>
#include <ql/math/integrals/segmentintegral.hpp>
#include <ql/math/statistics/convergencestatistics.hpp>
#include <ql/termstructures/volatility/abcd.hpp>
#include <ql/termstructures/volatility/abcdcalibration.hpp>
#include <ql/math/optimization/simplex.hpp>
#include <ql/quotes/simplequote.hpp>
#include <sstream>
#include <iostream>
#include <ctime>

using namespace QuantLib;

std::vector<std::vector<Matrix>>
theVegaBumps(bool factorwiseBumping, const ext::shared_ptr<MarketModel>& marketModel, bool doCaps) {
    Real multiplierCutOff = 50.0;
    Real projectionTolerance = 1E-4;
    Size numberRates= marketModel->numberOfRates();

    std::vector<VolatilityBumpInstrumentJacobian::Cap> caps;

    if (doCaps)
    {

        Rate capStrike = marketModel->initialRates()[0];

        for (Size i=0; i< numberRates-1; i=i+1)
        {
            VolatilityBumpInstrumentJacobian::Cap nextCap;
            nextCap.startIndex_ = i;
            nextCap.endIndex_ = i+1;
            nextCap.strike_ = capStrike;
            caps.push_back(nextCap);
        }


    }

    std::vector<VolatilityBumpInstrumentJacobian::Swaption> swaptions(numberRates);

    for (Size i=0; i < numberRates; ++i)
    {
        swaptions[i].startIndex_ = i;
        swaptions[i].endIndex_ = numberRates;

    }

    VegaBumpCollection possibleBumps(marketModel,
        factorwiseBumping);

    OrthogonalizedBumpFinder  bumpFinder(possibleBumps,
        swaptions,
        caps,
        multiplierCutOff, // if vector length grows by more than this discard
        projectionTolerance);      // if vector projection before scaling less than this discard

    std::vector<std::vector<Matrix>> theBumps;

    bumpFinder.GetVegaBumps(theBumps);

    return theBumps;

}

int Bermudan()
{

    Size numberRates =20;
    Real accrual = 0.5;
    Real firstTime = 0.5;

    std::vector<Real> rateTimes(numberRates+1);
    for (Size i=0; i < rateTimes.size(); ++i)
        rateTimes[i] = firstTime + i*accrual;

    std::vector<Real> paymentTimes(numberRates);
    std::vector<Real> accruals(numberRates,accrual);
    for (Size i=0; i < paymentTimes.size(); ++i)
        paymentTimes[i] = firstTime + (i+1)*accrual;

    Real fixedRate = 0.05;
    std::vector<Real> strikes(numberRates,fixedRate);
    Real receive = -1.0;

    // 0. a payer swap
    MultiStepSwap payerSwap(rateTimes, accruals, accruals, paymentTimes,
        fixedRate, true);

    // 1. the equivalent receiver swap
    MultiStepSwap receiverSwap(rateTimes, accruals, accruals, paymentTimes,
        fixedRate, false);

    //exercise schedule, we can exercise on any rate time except the last one
    std::vector<Rate> exerciseTimes(rateTimes);
    exerciseTimes.pop_back();

    // naive exercise strategy, exercise above a trigger level
    std::vector<Rate> swapTriggers(exerciseTimes.size(), fixedRate);
    SwapRateTrigger naifStrategy(rateTimes, swapTriggers, exerciseTimes);

    // Longstaff-Schwartz exercise strategy
    std::vector<std::vector<NodeData>> collectedData;
    std::vector<std::vector<Real>> basisCoefficients;

    // control that does nothing, need it because some control is expected
    NothingExerciseValue control(rateTimes);

//    SwapForwardBasisSystem basisSystem(rateTimes,exerciseTimes);
    SwapBasisSystem basisSystem(rateTimes,exerciseTimes);

    // rebate that does nothing, need it because some rebate is expected
    // when you break a swap nothing happens.
    NothingExerciseValue nullRebate(rateTimes);

    CallSpecifiedMultiProduct dummyProduct =
        CallSpecifiedMultiProduct(receiverSwap, naifStrategy,
        ExerciseAdapter(nullRebate));

    const EvolutionDescription& evolution = dummyProduct.evolution();

    // parameters for models
    Size seed = 12332; // for Sobol generator
    Size trainingPaths = 65536;
    Size paths = 16384;
    Size vegaPaths = 16384*64;

    std::cout << "training paths, " << trainingPaths << "\n";
    std::cout << "paths, " << paths << "\n";
    std::cout << "vega Paths, " << vegaPaths << "\n";
#ifdef _DEBUG
   trainingPaths = 512;
  paths = 1024;
  vegaPaths = 1024;
#endif

    // set up a calibration, this would typically be done by using a calibrator

    Real rateLevel =0.05;

    Real initialNumeraireValue = 0.95;

    Real volLevel = 0.11;
    Real beta = 0.2;
    Real gamma = 1.0;
    Size numberOfFactors = std::min<Size>(5,numberRates);

    Spread displacementLevel =0.02;

    // set up vectors
    std::vector<Rate> initialRates(numberRates,rateLevel);
    std::vector<Volatility> volatilities(numberRates, volLevel);
    std::vector<Spread> displacements(numberRates, displacementLevel);

    ExponentialForwardCorrelation correlations(
        rateTimes,volLevel, beta,gamma);

    FlatVol  calibration(
        volatilities,
        ext::make_shared<ExponentialForwardCorrelation>(correlations),
        evolution,
        numberOfFactors,
        initialRates,
        displacements);

    auto marketModel = ext::make_shared<FlatVol>(calibration);

    // we use a factory since there is data that will only be known later
    SobolBrownianGeneratorFactory generatorFactory(
        SobolBrownianGenerator::Diagonal, seed);

    std::vector<Size> numeraires( moneyMarketMeasure(evolution));

    // the evolver will actually evolve the rates
    LogNormalFwdRatePc  evolver(marketModel,
        generatorFactory,
        numeraires   // numeraires for each step
        );

    auto evolverPtr = ext::make_shared<LogNormalFwdRatePc>(evolver);

    int t1= clock();

    // gather data before computing exercise strategy
    collectNodeData(evolver,
        receiverSwap,
        basisSystem,
        nullRebate,
        control,
        trainingPaths,
        collectedData);

    int t2 = clock();

    // calculate the exercise strategy's coefficients
    genericLongstaffSchwartzRegression(collectedData,
        basisCoefficients);

    // turn the coefficients into an exercise strategy
    LongstaffSchwartzExerciseStrategy exerciseStrategy(
        basisSystem, basisCoefficients,
        evolution, numeraires,
        nullRebate, control);

    //  bermudan swaption to enter into the payer swap
    CallSpecifiedMultiProduct bermudanProduct =
        CallSpecifiedMultiProduct(
        MultiStepNothing(evolution),
        exerciseStrategy, payerSwap);

    //  callable receiver swap
    CallSpecifiedMultiProduct callableProduct =
        CallSpecifiedMultiProduct(
        receiverSwap, exerciseStrategy,
        ExerciseAdapter(nullRebate));

    // lower bound: evolve all 4 products togheter
    MultiProductComposite allProducts;
    allProducts.add(payerSwap);
    allProducts.add(receiverSwap);
    allProducts.add(bermudanProduct);
    allProducts.add(callableProduct);
    allProducts.finalize();

    AccountingEngine accounter(evolverPtr,
        Clone<MarketModelMultiProduct>(allProducts),
        initialNumeraireValue);

    SequenceStatisticsInc stats;

    accounter.multiplePathValues (stats,paths);

    int t3 = clock();

    std::vector<Real> means(stats.mean());

    for (Real mean : means)
        std::cout << mean << "\n";

    std::cout << " time to build strategy, " << (t2-t1)/static_cast<Real>(CLOCKS_PER_SEC)<< ", seconds.\n";
    std::cout << " time to price, " << (t3-t2)/static_cast<Real>(CLOCKS_PER_SEC)<< ", seconds.\n";

    // vegas

    // do it twice once with factorwise bumping, once without
    Size pathsToDoVegas = vegaPaths;

    for (Size i=0; i < 4; ++i)
    {

        bool allowFactorwiseBumping = i % 2 > 0 ;

        bool doCaps = i / 2 > 0 ;





        LogNormalFwdRateEuler evolverEuler(marketModel,
            generatorFactory,
            numeraires
            ) ;

        MarketModelPathwiseSwap receiverPathwiseSwap(  rateTimes,
            accruals,
            strikes,
            receive);
        Clone<MarketModelPathwiseMultiProduct> receiverPathwiseSwapPtr(receiverPathwiseSwap.clone());

        //  callable receiver swap
        CallSpecifiedPathwiseMultiProduct callableProductPathwise(receiverPathwiseSwapPtr,
            exerciseStrategy);

        Clone<MarketModelPathwiseMultiProduct> callableProductPathwisePtr(callableProductPathwise.clone());


        std::vector<std::vector<Matrix>> theBumps(theVegaBumps(allowFactorwiseBumping,
            marketModel,
            doCaps));

        PathwiseVegasOuterAccountingEngine
            accountingEngineVegas(ext::make_shared<LogNormalFwdRateEuler>(evolverEuler),
            callableProductPathwisePtr,
            marketModel,
            theBumps,
            initialNumeraireValue);

        std::vector<Real> values,errors;

        accountingEngineVegas.multiplePathValues(values,errors,pathsToDoVegas);


        std::cout << "vega output \n";
        std::cout << " factorwise bumping " << allowFactorwiseBumping << "\n";
        std::cout << " doCaps " << doCaps << "\n";



        Size r=0;

        std::cout << " price estimate, " << values[r++] << "\n";

        for (Size i=0; i < numberRates; ++i, ++r)
            std::cout << " Delta, " << i << ", " << values[r] << ", " << errors[r] << "\n";

        Real totalVega = 0.0;

        for (; r < values.size(); ++r)
        {
            std::cout << " vega, " << r - 1 -  numberRates<< ", " << values[r] << " ," << errors[r] << "\n";
            totalVega +=  values[r];
        }

        std::cout << " total Vega, " << totalVega << "\n";
    }

    // upper bound

    MTBrownianGeneratorFactory uFactory(seed+142);

    auto upperEvolver = ext::make_shared<LogNormalFwdRatePc>(ext::make_shared<FlatVol>(calibration),
            uFactory,
            numeraires   // numeraires for each step
            );

    std::vector<ext::shared_ptr<MarketModelEvolver>> innerEvolvers;

    std::valarray<bool> isExerciseTime =   isInSubset(evolution.evolutionTimes(),    exerciseStrategy.exerciseTimes());

    for (Size s=0; s < isExerciseTime.size(); ++s)
    {
        if (isExerciseTime[s])
        {
            MTBrownianGeneratorFactory iFactory(seed+s);
            auto e = ext::make_shared<LogNormalFwdRatePc>(ext::make_shared<FlatVol>(calibration),
                    uFactory,
                    numeraires,  // numeraires for each step
                    s);

            innerEvolvers.push_back(e);
        }
    }

    UpperBoundEngine uEngine(upperEvolver,  // does outer paths
                             innerEvolvers, // for sub-simulations that do continuation values
                             receiverSwap,
                             nullRebate,
                             receiverSwap,
                             nullRebate,
                             exerciseStrategy,
                             initialNumeraireValue);

    Statistics uStats;
    Size innerPaths = 255;
    Size outerPaths =256;

    int t4 = clock();

    uEngine.multiplePathValues(uStats,outerPaths,innerPaths);
    Real upperBound = uStats.mean();
    Real upperSE = uStats.errorEstimate();

    int t5=clock();

    std::cout << " Upper - lower is, " << upperBound << ", with standard error " << upperSE << "\n";
    std::cout << " time to compute upper bound is,  " << (t5-t4)/static_cast<Real>(CLOCKS_PER_SEC) << ", seconds.\n";

    return 0;
}

int InverseFloater(Real rateLevel)
{

    Size numberRates =20;
    Real accrual = 0.5;
    Real firstTime = 0.5;

    Real strike =0.15;
    Real fixedMultiplier = 2.0;
    Real floatingSpread =0.0;
    bool payer = true;


    std::vector<Real> rateTimes(numberRates+1);
    for (Size i=0; i < rateTimes.size(); ++i)
        rateTimes[i] = firstTime + i*accrual;

    std::vector<Real> paymentTimes(numberRates);
    std::vector<Real> accruals(numberRates,accrual);
    std::vector<Real> fixedStrikes(numberRates,strike);
    std::vector<Real> floatingSpreads(numberRates,floatingSpread);
    std::vector<Real> fixedMultipliers(numberRates,fixedMultiplier);

    for (Size i=0; i < paymentTimes.size(); ++i)
        paymentTimes[i] = firstTime + (i+1)*accrual;

  MultiStepInverseFloater inverseFloater(
                                                        rateTimes,
                                                        accruals,
                                                         accruals,
                                                        fixedStrikes,
                                                        fixedMultipliers,
                                                        floatingSpreads,
                                                         paymentTimes,
                                                         payer);




    //exercise schedule, we can exercise on any rate time except the last one
    std::vector<Rate> exerciseTimes(rateTimes);
    exerciseTimes.pop_back();

    // naive exercise strategy, exercise above a trigger level
    Real trigger =0.05;
    std::vector<Rate> swapTriggers(exerciseTimes.size(), trigger);
    SwapRateTrigger naifStrategy(rateTimes, swapTriggers, exerciseTimes);

    // Longstaff-Schwartz exercise strategy
    std::vector<std::vector<NodeData>> collectedData;
    std::vector<std::vector<Real>> basisCoefficients;

    // control that does nothing, need it because some control is expected
    NothingExerciseValue control(rateTimes);

   SwapForwardBasisSystem basisSystem(rateTimes,exerciseTimes);
//    SwapBasisSystem basisSystem(rateTimes,exerciseTimes);



    // rebate that does nothing, need it because some rebate is expected
    // when you break a swap nothing happens.
    NothingExerciseValue nullRebate(rateTimes);

    CallSpecifiedMultiProduct dummyProduct =
        CallSpecifiedMultiProduct(inverseFloater, naifStrategy,
        ExerciseAdapter(nullRebate));

    const EvolutionDescription& evolution = dummyProduct.evolution();


    // parameters for models


    Size seed = 12332; // for Sobol generator
    Size trainingPaths = 65536;
    Size paths = 65536;
    Size vegaPaths =16384;

#ifdef _DEBUG
   trainingPaths = 8192;
  paths = 8192;
  vegaPaths = 1024;
#endif


    std::cout <<  " inverse floater \n";
    std::cout << " fixed strikes :  "  << strike << "\n";
    std::cout << " number rates :  " << numberRates << "\n";

    std::cout << "training paths, " << trainingPaths << "\n";
    std::cout << "paths, " << paths << "\n";
    std::cout << "vega Paths, " << vegaPaths << "\n";


    // set up a calibration, this would typically be done by using a calibrator



    //Real rateLevel =0.08;

    std::cout << " rate level " <<  rateLevel << "\n";

    Real initialNumeraireValue = 0.95;

    Real volLevel = 0.11;
    Real beta = 0.2;
    Real gamma = 1.0;
    Size numberOfFactors = std::min<Size>(5,numberRates);

    Spread displacementLevel =0.02;

    // set up vectors
    std::vector<Rate> initialRates(numberRates,rateLevel);
    std::vector<Volatility> volatilities(numberRates, volLevel);
    std::vector<Spread> displacements(numberRates, displacementLevel);

    ExponentialForwardCorrelation correlations(
        rateTimes,volLevel, beta,gamma);




    FlatVol  calibration(
        volatilities,
        ext::make_shared<ExponentialForwardCorrelation>(correlations),
        evolution,
        numberOfFactors,
        initialRates,
        displacements);

    auto marketModel = ext::make_shared<FlatVol>(calibration);

    // we use a factory since there is data that will only be known later
    SobolBrownianGeneratorFactory generatorFactory(
        SobolBrownianGenerator::Diagonal, seed);

    std::vector<Size> numeraires( moneyMarketMeasure(evolution));

    // the evolver will actually evolve the rates
    LogNormalFwdRatePc  evolver(marketModel,
        generatorFactory,
        numeraires   // numeraires for each step
        );

    auto evolverPtr = ext::make_shared<LogNormalFwdRatePc>(evolver);

    int t1= clock();

    // gather data before computing exercise strategy
    collectNodeData(evolver,
        inverseFloater,
        basisSystem,
        nullRebate,
        control,
        trainingPaths,
        collectedData);

    int t2 = clock();


    // calculate the exercise strategy's coefficients
    genericLongstaffSchwartzRegression(collectedData,
        basisCoefficients);


    // turn the coefficients into an exercise strategy
    LongstaffSchwartzExerciseStrategy exerciseStrategy(
        basisSystem, basisCoefficients,
        evolution, numeraires,
        nullRebate, control);


    //  callable receiver swap
    CallSpecifiedMultiProduct callableProduct =
        CallSpecifiedMultiProduct(
        inverseFloater, exerciseStrategy,
        ExerciseAdapter(nullRebate));

     MultiProductComposite allProducts;
    allProducts.add(inverseFloater);
    allProducts.add(callableProduct);
    allProducts.finalize();


    AccountingEngine accounter(evolverPtr,
        Clone<MarketModelMultiProduct>(allProducts),
        initialNumeraireValue);

    SequenceStatisticsInc stats;

    accounter.multiplePathValues (stats,paths);

    int t3 = clock();

    std::vector<Real> means(stats.mean());

    for (Real mean : means)
        std::cout << mean << "\n";

    std::cout << " time to build strategy, " << (t2-t1)/static_cast<Real>(CLOCKS_PER_SEC)<< ", seconds.\n";
    std::cout << " time to price, " << (t3-t2)/static_cast<Real>(CLOCKS_PER_SEC)<< ", seconds.\n";

    // vegas

    // do it twice once with factorwise bumping, once without
    Size pathsToDoVegas = vegaPaths;

    for (Size i=0; i < 4; ++i)
    {

        bool allowFactorwiseBumping = i % 2 > 0 ;

        bool doCaps = i / 2 > 0 ;


        LogNormalFwdRateEuler evolverEuler(marketModel,
            generatorFactory,
            numeraires
            ) ;

        MarketModelPathwiseInverseFloater pathwiseInverseFloater(
                                                         rateTimes,
                                                         accruals,
                                                         accruals,
                                                         fixedStrikes,
                                                         fixedMultipliers,
                                                         floatingSpreads,
                                                         paymentTimes,
                                                         payer);

        Clone<MarketModelPathwiseMultiProduct> pathwiseInverseFloaterPtr(pathwiseInverseFloater.clone());

        //  callable inverse floater
        CallSpecifiedPathwiseMultiProduct callableProductPathwise(pathwiseInverseFloaterPtr,
                                                                                                                                               exerciseStrategy);

        Clone<MarketModelPathwiseMultiProduct> callableProductPathwisePtr(callableProductPathwise.clone());


        std::vector<std::vector<Matrix>> theBumps(theVegaBumps(allowFactorwiseBumping,
            marketModel,
            doCaps));

        PathwiseVegasOuterAccountingEngine
            accountingEngineVegas(ext::make_shared<LogNormalFwdRateEuler>(evolverEuler),
   //         pathwiseInverseFloaterPtr,
            callableProductPathwisePtr,
            marketModel,
            theBumps,
            initialNumeraireValue);

        std::vector<Real> values,errors;

        accountingEngineVegas.multiplePathValues(values,errors,pathsToDoVegas);


        std::cout << "vega output \n";
        std::cout << " factorwise bumping " << allowFactorwiseBumping << "\n";
        std::cout << " doCaps " << doCaps << "\n";



        Size r=0;

        std::cout << " price estimate, " << values[r++] << "\n";

        for (Size i=0; i < numberRates; ++i, ++r)
            std::cout << " Delta, " << i << ", " << values[r] << ", " << errors[r] << "\n";

        Real totalVega = 0.0;

        for (; r < values.size(); ++r)
        {
            std::cout << " vega, " << r - 1 -  numberRates<< ", " << values[r] << " ," << errors[r] << "\n";
            totalVega +=  values[r];
        }

        std::cout << " total Vega, " << totalVega << "\n";
    }

    // upper bound

    MTBrownianGeneratorFactory uFactory(seed+142);


    auto upperEvolver = ext::make_shared<LogNormalFwdRatePc>(ext::make_shared<FlatVol>(calibration),
            uFactory,
            numeraires   // numeraires for each step
            );

    std::vector<ext::shared_ptr<MarketModelEvolver>> innerEvolvers;

    std::valarray<bool> isExerciseTime =   isInSubset(evolution.evolutionTimes(),    exerciseStrategy.exerciseTimes());

    for (Size s=0; s < isExerciseTime.size(); ++s)
    {
        if (isExerciseTime[s])
        {
            MTBrownianGeneratorFactory iFactory(seed+s);
            auto e = ext::make_shared<LogNormalFwdRatePc>(ext::make_shared<FlatVol>(calibration),
                    uFactory,
                    numeraires ,  // numeraires for each step
                    s);

            innerEvolvers.push_back(e);
        }
    }



    UpperBoundEngine uEngine(upperEvolver,  // does outer paths
                             innerEvolvers, // for sub-simulations that do continuation values
                             inverseFloater,
                             nullRebate,
                             inverseFloater,
                             nullRebate,
                             exerciseStrategy,
                             initialNumeraireValue);

    Statistics uStats;
    Size innerPaths = 255;
    Size outerPaths =256;

    int t4 = clock();

    uEngine.multiplePathValues(uStats,outerPaths,innerPaths);
    Real upperBound = uStats.mean();
    Real upperSE = uStats.errorEstimate();

    int t5=clock();

    std::cout << " Upper - lower is, " << upperBound << ", with standard error " << upperSE << "\n";
    std::cout << " time to compute upper bound is,  " << (t5-t4)/static_cast<Real>(CLOCKS_PER_SEC) << ", seconds.\n";

    return 0;
}

int main()
{
    try {
        for (Size i=5; i < 10; ++i)
            InverseFloater(i/100.0);

        return 0;
    } catch (std::exception& e) {
        std::cerr << e.what() << std::endl;
        return 1;
    } catch (...) {
        std::cerr << "unknown error" << std::endl;
        return 1;
    }
}

在这里插入图片描述

以上。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1889206.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【linux】网络基础(3)——tcp协议

文章目录 TCP协议概括TCP头部格式TCP连接管理建立连接&#xff08;三次握手&#xff09;数据传输确认应答机制捎带应答 滑动窗口丢包问题 拥塞控制延时应达 终止连接&#xff08;四次挥手&#xff09; TCP协议概括 TCP是一个面向连接的协议&#xff0c;在传输数据之前需要建立连…

Zabbix 配置进程监控

Zabbix 进程监控介绍 Zabbix可以很方便地监控服务器上的各种进程。在使用Zabbix进行进程监控时&#xff0c;被监控的节点通常需要安装Zabbix Agent。Zabbix Agent 是一个轻量级的代理程序&#xff0c;安装在被监控的主机上&#xff0c;用于收集系统的各种性能数据和指标&#…

OpenBMB × Hugging Face × THUNLP,大模型课开班丨伙伴活动推荐

2022 年&#xff0c;OpenBMB 开源社区联合 THUNLP 开国内大模型公开课先河&#xff0c;全网百万级播放量&#xff0c;已帮助无数大模型爱好者从入门到精通。 这个夏天&#xff0c;OpenBMB 携手 HuggingFace、THUNLP 和面壁智能&#xff0c;推出大模型公开课第二季。全球知名开…

vue实现一个简单的审批绘制功能

1、vue代码 <div class"approval"><div class"approval_ul" v-for"(item,key) in approvalList" :key"key"><div><el-radio-group v-model"item.jointlySign"><el-radio label"1">…

人大出品!最适合大模型初学者人手的LLM大语言模型综述,爆火全网

今天给大家推荐一本大模型&#xff08;LLM&#xff09;这块的一本外文书&#xff0c;经过整理已经出中文版了&#xff0c;就是这本《大型语言模型综述》&#xff01;本书在git上有9.2k star&#xff0c;还是很不错的一本大模型方面的书。 本教程内容主要内容&#xff1a;中文版…

外挂级OCR神器:免费文档解析、表格识别、手写识别、古籍识别、PDF转Word

智能文档解析&#xff1a;大模型友好的文档解析工具 PDF转Markdown 支持将任意格式的文件&#xff08;图片、PDF、Doc&#xff0f;Docx、网页等&#xff09;解析为Markdown或Json格式&#xff0c;以对LLM友好的方式呈现。 更高速度&#xff1a;100页PDF最快1.5s完成解析 更大…

Qt/C++编写地图应用/离线地图下载/路径规划/轨迹回放/海量点/坐标转换

一、前言说明 这个地图组件写了很多年了&#xff0c;最初设计的比较粗糙&#xff0c;最开始只是为了满足项目需要&#xff0c;并没有考虑太多拓展性&#xff0c;比如最初都是按照百度地图写死在代码中&#xff0c;经过这几年大量的现场实际应用&#xff0c;以及大量的用户提出…

1.7-自然语言的分布式表示-skip-gram模型代码实现

文章目录 1 skip-gram模型的实现1.1模型结构的实现1.2前向传播的实现1.3反向传播的实现 2 skip-gram模型的计算与学习3总结 书上提供了skip-gram模型的代码实现&#xff0c;但是没有去讲解&#xff1b;这里我们自己来看看他提供的代码&#xff1b;看代码的时候&#xff0c;尤其…

yarn不同操作系统的安装与配置

Yarn 是一个快速、可靠且安全的依赖包管理工具&#xff0c;用于替代 npm。以下是在不同操作系统上安装和配置 Yarn 的步骤。 1. 安装 Node.js 在安装 Yarn 之前&#xff0c;请确保已经安装了 Node.js&#xff0c;因为 Yarn 需要 Node.js 环境。你可以在 Node.js — Run JavaSc…

极简通俗VAE

一、VAE 背景&#xff1a;VAE什么变分自编码器&#xff0c;听起来起名都头大&#xff0c;用大白话告诉你。 把一个复杂图片压缩成两个参数&#xff0c;用这个参数采样再复原。 这个简单的东西是两个参数&#xff0c;均值和方差&#xff0c;用&#xff08;0&#xff0c;1&…

15kg级弹簧刀高速巡飞无人机技术详解

弹簧刀高速巡飞无人机&#xff0c;作为一种先进的战术导弹系统&#xff0c;融合了无人机与导弹的双重特性&#xff0c;成为了现代战争中不可或缺的侦察与打击利器。该无人机以其小巧的外形设计、优异的性能表现和广泛的适用领域&#xff0c;受到了全球军事领域的广泛关注。弹簧…

ChatGPT如何应用在谷歌seo?

ChatGPT在提升博客和创作效率方面非常有用。它可以帮助你快速生成吸引人的标题&#xff0c;确保内容第一眼就能抓住读者的注意力。不仅如此&#xff0c;ChatGPT还能根据你的主题生成详细的文章提纲&#xff0c;让你在写作时思路更加清晰。关键词优化也是它的强项&#xff0c;可…

当《开心消消乐》遇上 AI 推理,我们找到了高质量关卡背后的原因!

随着 AI 热潮席卷各行各业&#xff0c;其落地应用已经成为企业技术研发升级的工作重心。人工智能应用的升级不仅需要软件层面的升级迭代&#xff0c;还需要大规模基础设施的支撑。然而&#xff0c;自行搭建大规模算力、存储基础设施对于大多数企业而言都存在技术难度、人力资源…

OpenSSL的一些使用案例

目录 一、介绍 二、基本使用 1、Shell &#xff08;1&#xff09;文件加解密 &#xff08;2&#xff09;生成密钥文件 2、API &#xff08;1&#xff09;md5sum &#xff08;2&#xff09;AES256加解密 一、介绍 本篇博客重点不是详细描述 OpenSSL 的用法&#xff0c;只…

【IA修补一切】Inpaint Anything: Segment Anything Meets Image Inpainting论文解读

作者来自中国科学技术大学和东部高级研究院。文章提出了一个新的图像修复工具“Inpaint Anything (IA)”&#xff0c;它结合了不同的视觉模型&#xff0c;如Segment Anything Model (SAM)、LaMa、Stable Diffusion (SD)等&#xff0c;以实现更高级的图像编辑功能。 论文&#x…

P3374 【模板】树状数组 1

题目描述 如题&#xff0c;已知一个数列&#xff0c;你需要进行下面两种操作&#xff1a; 将某一个数加上 &#x1d465;x 求出某区间每一个数的和 输入格式 第一行包含两个正整数 &#x1d45b;,&#x1d45a;n,m&#xff0c;分别表示该数列数字的个数和操作的总个数。 …

【MySQL】表的操作{创建/查看/修改/删除}

文章目录 1.创建表1.1comment&#xff1a;注释信息1.2存储引擎 2.查看表3.修改表3.1add添加列&#xff0c;对原数据无影响3.2drop删除列3.3modify修改列类型3.4change修改列名3.5rename [to]修改表名 4.删除表5.总结 1.创建表 CREATE TABLE table_name (field1 datatype,field…

springboot医院门诊挂号系统-计算机毕业设计源码033123

目 录 摘要 1 绪论 1.1研究背景及意义 1.2研究现状 1.3系统开发技术的特色 1.4论文结构与章节安排 2 医院门诊挂号系统系统分析 2.1 可行性分析 2.2 系统流程分析 2.2.1数据增加流程 2.3.2数据修改流程 2.3.3数据删除流程 2.3 系统功能分析 2.3.1 功能性分析 2.…

第一百三十八节 Java数据类型教程 - Java boolean数据类型和float数据类型

Java数据类型教程 - Java boolean数据类型 布尔数据类型只有两个有效值:true和false。 这两个值称为布尔值字面量。 我们可以使用布尔值字面量 boolean done; // Declares a boolean variable named done done true; // Assigns true to done布尔变量不能转换为任何其他…

什么是分库分表?它有哪些实现类型?

假如你正在使用关系型数据库开发一款健康类系统。业务发展很好&#xff0c;系统有很多活跃的新老用户&#xff0c;这些用户会和平台的医生团队进行交互&#xff0c;每天可能会生成数万甚至数十万级别的业务数据。这样的话&#xff0c;随着数据量越来越大&#xff0c;系统中的某…