动手学深度学习5.6 GPU-笔记练习(PyTorch)

news2024/10/6 11:15:37

以下内容为结合李沐老师的课程和教材补充的学习笔记,以及对课后练习的一些思考,自留回顾,也供同学之人交流参考。

本节课程地址:17 使用和购买 GPU【动手学深度学习v2】_哔哩哔哩_bilibili

本节教材地址:5.6. GPU — 动手学深度学习 2.0.0 documentation (d2l.ai)

本节开源代码:...>d2l-zh>pytorch>chapter_multilayer-perceptrons>use-gpu.ipynb


以下代码使用Kaggle每周免费提供的GPU运行。

使用方法:登录Kaggle,点击右上角头像,进入Setting,验证手机号完成后,即可使用GPU。

以下代码使用Kaggle每周免费提供的GPU运行。

使用方法:登录Kaggle,点击右上角头像,进入Setting,验证手机号完成后,即可使用GPU。

Setting中也可以查看GPU可用时长:

GPU

在 本章前言 中, 我们回顾了过去20年计算能力的快速增长。 简而言之,自2000年以来,GPU性能每十年增长1000倍。

本节,我们将讨论如何利用这种计算性能进行研究。 首先是如何使用单个GPU,然后是如何使用多个GPU和多个服务器(具有多个GPU)。

我们先看看如何使用单个NVIDIA GPU进行计算。 首先,确保至少安装了一个NVIDIA GPU。 然后,下载NVIDIA驱动和CUDA 并按照提示设置适当的路径。 当这些准备工作完成,就可以使用nvidia-smi命令来(查看显卡信息。)

!nvidia-smi

输出结果:
Fri Apr 26 09:30:05 2024
+---------------------------------------------------------------------------------------+
| NVIDIA-SMI 535.129.03 Driver Version: 535.129.03 CUDA Version: 12.2 |
|-----------------------------------------+----------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+======================+======================|
| 0 Tesla T4 Off | 00000000:00:04.0 Off | 0 |
| N/A 45C P8 11W / 70W | 0MiB / 15360MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+
| 1 Tesla T4 Off | 00000000:00:05.0 Off | 0 |
| N/A 46C P8 12W / 70W | 0MiB / 15360MiB | 0% Default |
| | | N/A |
+-----------------------------------------+----------------------+----------------------+

+---------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=======================================================================================|
| No running processes found |
+---------------------------------------------------------------------------------------+

在PyTorch中,每个数组都有一个设备(device), 我们通常将其称为环境(context)。 默认情况下,所有变量和相关的计算都分配给CPU。 有时环境可能是GPU。 当我们跨多个服务器部署作业时,事情会变得更加棘手。 通过智能地将数组分配给环境, 我们可以最大限度地减少在设备之间传输数据的时间。 例如,当在带有GPU的服务器上训练神经网络时, 我们通常希望模型的参数在GPU上。

要运行此部分中的程序,至少需要两个GPU。 注意,对大多数桌面计算机来说,这可能是奢侈的,但在云中很容易获得。 例如可以使用AWS EC2的多GPU实例。 本书的其他章节大都不需要多个GPU, 而本节只是为了展示数据如何在不同的设备之间传递。

[计算设备]

我们可以指定用于存储和计算的设备,如CPU和GPU。 默认情况下,张量是在内存中创建的,然后使用CPU计算它。

在PyTorch中,CPU和GPU可以用torch.device('cpu') 和torch.device('cuda')表示。 应该注意的是,cpu设备意味着所有物理CPU和内存, 这意味着PyTorch的计算将尝试使用所有CPU核心。 然而,gpu设备只代表一个卡和相应的显存。 如果有多个GPU,我们使用torch.device(f'cuda:{i}') 来表示第 i 块GPU(i 从0开始)。 另外,cuda:0cuda是等价的。

import torch
from torch import nn

torch.device('cpu'), torch.device('cuda'), torch.device('cuda:1')

输出结果:

(device(type='cpu'), device(type='cuda'), device(type='cuda', index=1))

我们可以(查询可用gpu的数量。)

torch.cuda.device_count()

输出结果:

2

现在我们定义了两个方便的函数, [这两个函数允许我们在不存在所需所有GPU的情况下运行代码。]

def try_gpu(i=0):  #@save
    """如果存在,则返回gpu(i),否则返回cpu()"""
    if torch.cuda.device_count() >= i + 1:
        return torch.device(f'cuda:{i}')
    return torch.device('cpu')

def try_all_gpus():  #@save
    """返回所有可用的GPU,如果没有GPU,则返回[cpu(),]"""
    devices = [torch.device(f'cuda:{i}')
             for i in range(torch.cuda.device_count())]
    return devices if devices else [torch.device('cpu')]

try_gpu(), try_gpu(10), try_all_gpus()

输出结果:

(device(type='cuda', index=0),
device(type='cpu'),
[device(type='cuda', index=0), device(type='cuda', index=1)])

张量与GPU

我们可以[查询张量所在的设备。] 默认情况下,张量是在CPU上创建的。

x = torch.tensor([1, 2, 3])
x.device

输出结果:

device(type='cpu')

需要注意的是,无论何时我们要对多个项进行操作, 它们都必须在同一个设备上。 例如,如果我们对两个张量求和, 我们需要确保两个张量都位于同一个设备上, 否则框架将不知道在哪里存储结果,甚至不知道在哪里执行计算。

[存储在GPU上]

有几种方法可以在GPU上存储张量。 例如,我们可以在创建张量时指定存储设备。接 下来,我们在第一个gpu上创建张量变量X。 在GPU上创建的张量只消耗这个GPU的显存。 我们可以使用nvidia-smi命令查看显存使用情况。 一般来说,我们需要确保不创建超过GPU显存限制的数据。

X = torch.ones(2, 3, device=try_gpu())
X

输出结果:

tensor([[1., 1., 1.],
[1., 1., 1.]], device='cuda:0')

假设我们至少有两个GPU,下面的代码将在(第二个GPU上创建一个随机张量。)

Y = torch.rand(2, 3, device=try_gpu(1))
Y

输出结果:

tensor([[0.7598, 0.1343, 0.8962],
[0.1689, 0.5433, 0.4807]], device='cuda:1')

复制

如果我们[要计算X + Y,我们需要决定在哪里执行这个操作]。 例如,如 :numref:fig_copyto所示, 我们可以将X传输到第二个GPU并在那里执行操作。 不要简单地X加上Y,因为这会导致异常, 运行时引擎不知道该怎么做:它在同一设备上找不到数据会导致失败。 由于Y位于第二个GPU上,所以我们需要将X移到那里, 然后才能执行相加运算。

Z = X.cuda(1)
print(X)
print(Z)

输出结果:

tensor([[1., 1., 1.],
[1., 1., 1.]], device='cuda:0')
tensor([[1., 1., 1.],
[1., 1., 1.]], device='cuda:1')

[现在数据在同一个GPU上(ZY都在),我们可以将它们相加。]

Y + Z

输出结果:

tensor([[1.7598, 1.1343, 1.8962],
[1.1689, 1.5433, 1.4807]], device='cuda:1')

假设变量Z已经存在于第二个GPU上。 如果我们还是调用Z.cuda(1)会发生什么? 它将返回Z,而不会复制并分配新内存。

Z.cuda(1) is Z

输出结果:

True

旁注

人们使用GPU来进行机器学习,因为单个GPU相对运行速度快。 但是在设备(CPU、GPU和其他机器)之间传输数据比计算慢得多。 这也使得并行化变得更加困难,因为我们必须等待数据被发送(或者接收), 然后才能继续进行更多的操作。 这就是为什么拷贝操作要格外小心。 根据经验,多个小操作比一个大操作糟糕得多。 此外,一次执行几个操作比代码中散布的许多单个操作要好得多。 如果一个设备必须等待另一个设备才能执行其他操作, 那么这样的操作可能会阻塞。 这有点像排队订购咖啡,而不像通过电话预先订购: 当客人到店的时候,咖啡已经准备好了。

最后,当我们打印张量或将张量转换为NumPy格式时, 如果数据不在内存中,框架会首先将其复制到内存中, 这会导致额外的传输开销。 更糟糕的是,它现在受制于全局解释器锁,使得一切都得等待Python完成。

[神经网络与GPU]

类似地,神经网络模型可以指定设备。 下面的代码将模型参数放在GPU上。

net = nn.Sequential(nn.Linear(3, 1))
net = net.to(device=try_gpu())

在接下来的几章中, 我们将看到更多关于如何在GPU上运行模型的例子, 因为它们将变得更加计算密集。

当输入为GPU上的张量时,模型将在同一GPU上计算结果。

net(X)

输出结果:

tensor([[0.0873],
[0.0873]], device='cuda:0', grad_fn=<AddmmBackward0>)

让我们(确认模型参数存储在同一个GPU上。)

net[0].weight.data.device

输出结果:

device(type='cuda', index=0)

总之,只要所有的数据和参数都在同一个设备上, 我们就可以有效地学习模型。 在下面的章节中,我们将看到几个这样的例子。

小结

  • 我们可以指定用于存储和计算的设备,例如CPU或GPU。默认情况下,数据在主内存中创建,然后使用CPU进行计算。
  • 深度学习框架要求计算的所有输入数据都在同一设备上,无论是CPU还是GPU。
  • 不经意地移动数据可能会显著降低性能。一个典型的错误如下:计算GPU上每个小批量的损失,并在命令行中将其报告给用户(或将其记录在NumPy ndarray中)时,将触发全局解释器锁,从而使所有GPU阻塞。最好是为GPU内部的日志分配内存,并且只移动较大的日志。

练习

1. 尝试一个计算量更大的任务,比如大矩阵的乘法,看看CPU和GPU之间的速度差异。再试一个计算量很小的任务呢?

解:
对于计算量较大的任务,GPU的运行速度相比CPU有很大优势; 但对于计算量较小的任务,GPU则没有明显优势。

代码如下:

import time

# 对于计算量较大的任务
# CPU计算计时
start1 = time.time()
for i in range(100):
    A = torch.randn(200, 200)
    B = torch.randn(200, 200)
    C = torch.matmul(A, B)
end1 = time.time()
print('CPU计算耗时:', round((end1 - start1)*1000, 2),'ms')

# GPU计算计时
start2 = time.time()
for i in range(100):
    A = torch.randn(200, 200, device=try_gpu())
    B = torch.randn(200, 200, device=try_gpu())
    C = torch.matmul(A, B)
end2 = time.time()
print('GPU计算耗时:', round((end2 - start2)*1000, 2),'ms')
CPU计算耗时: 119.72 ms
GPU计算耗时: 14.13 ms
# 对于计算量较小的任务
# CPU计算计时
start1 = time.time()
for i in range(3):
    A = torch.randn(5, 5)
    B = torch.randn(5, 5)
    C = torch.matmul(A, B)
end1 = time.time()
print('CPU计算耗时:', round((end1 - start1)*1000, 2),'ms')

# GPU计算计时
start2 = time.time()
for i in range(10):
    A = torch.randn(50, 50, device=try_gpu())
    B = torch.randn(50, 50, device=try_gpu())
    C = torch.matmul(A, B)
end2 = time.time()
print('GPU计算耗时:', round((end2 - start2)*1000, 2),'ms')

输出结果:

CPU计算耗时: 1.17 ms
GPU计算耗时: 1.28 ms

2. 我们应该如何在GPU上读写模型参数?

解:
与上节操作类似,只是在GPU上进行,增加一句 net.to(device=try_gpu()),代码如下:

# 将前面存储在GPU上的net参数存储
torch.save(net.state_dict(), 'net.params')
# 调用存储的参数
net2 = nn.Sequential(nn.Linear(3, 1))
net2.load_state_dict(torch.load('net.params'))
net2 = net2.to(device=try_gpu())
net2(X) == net(X)

输出结果:

tensor([[True],
[True]], device='cuda:0')

3. 测量计算1000个 100×100 矩阵的矩阵乘法所需的时间,并记录输出矩阵的Frobenius范数,一次记录一个结果,而不是在GPU上保存日志并仅传输最终结果。

解:
一次记录一个结果花费的时间更多, 代码如下:

start1 = time.time()
X = torch.randn(100, 100, device=try_gpu())
for i in range(999):
    X = torch.matmul(X, X)
    # 每次矩阵乘法后记录一次范数
    Frobenius_norm = torch.norm(X)
end1 = time.time()
print('每次矩阵乘法记录一次范数的GPU计算耗时:', round((end1 - start1)*1000, 2),'ms')

start2 = time.time()
X = torch.randn(100, 100, device=try_gpu())
for i in range(999):
    X = torch.matmul(X, X)
# 只记录最终矩阵乘法结果的范数
Frobenius_norm = torch.norm(X)
end2 = time.time()
print('只记录最终结果范数的GPU计算耗时:', round((end2 - start2)*1000, 2),'ms')

输出结果:

每次矩阵乘法记录一次范数的GPU计算耗时: 34.92 ms
只记录最终结果范数的GPU计算耗时: 13.01 ms

4. 测量同时在两个GPU上执行两个矩阵乘法与在一个GPU上按顺序执行两个矩阵乘法所需的时间。提示:应该看到近乎线性的缩放。

解:
两个GPU同时执行两个矩阵乘法,可减少接近一半的运行时间。 代码如下:

# 在两个GPU上同时执行两个矩阵乘法
A = torch.randn(200, 200, device=try_gpu())
B = torch.randn(200, 200, device=try_gpu())
C = A.cuda(1)
D = B.cuda(1)
start1 = time.time()
X = torch.matmul(A, B)
Y = torch.matmul(C, D)
end1 = time.time()
print('在两个GPU上同时执行两个矩阵乘法计算耗时:', round((end1 - start1)*1000, 2),'ms')

# 在一个GPU上按顺序执行两个矩阵乘法
start2 = time.time()
X = torch.matmul(A, B)
Y = torch.matmul(A, B)
end2 = time.time()
print('在一个GPU上顺序执行两个矩阵乘法计算耗时:', round((end2 - start2)*1000, 2),'ms')

输出结果:

在两个GPU上同时执行两个矩阵乘法计算耗时: 0.27 ms
在一个GPU上顺序执行两个矩阵乘法计算耗时: 0.53 ms

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1883503.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

STM32第十四课:低功耗模式和RTC实时时钟

文章目录 需求一、低功耗模式1.睡眠模式2.停止模式3.待机模式 二、RTC实现实时时钟1.寄存器配置流程2.标准库开发3.主函数调用 三、需求实现代码 需求 1.实现睡眠模式、停止模式和待机模式。 2.实现RTC实时时间显示。 一、低功耗模式 电源对电子设备的重要性不言而喻&#xff…

springboot校园购物网站APP-计算机毕业设计源码041037

摘 要 21世纪的今天&#xff0c;随着社会的不断发展与进步&#xff0c;人们对于信息科学化的认识&#xff0c;已由低层次向高层次发展&#xff0c;由原来的感性认识向理性认识提高&#xff0c;管理工作的重要性已逐渐被人们所认识&#xff0c;科学化的管理&#xff0c;使信息存…

以太网常用协议——ARP协议

文章目录 一、 ARP协议与MAC层1.TCP/IP协议2. MAC地址3. ARP映射4. ARP请求和ARP应答 二、以太网帧格式三、ARP协议1. 以太网ARP通信测试&#xff1a; 以太网使用的协议很多&#xff0c;常用的有ARP、UDP等。 再介绍具体协议之前需要先知道一些基本的概念&#xff1a; 一、 AR…

生产环境部署与协同开发-Docker(原创超全)

关闭防火墙 systemctl stop firewalld.service 关闭SELinux vim /etc/selinux/config 查看yum支持的包并安装docker引擎 yum listyum install -y docker 启动docker设置docker自启动测试docker是否安装成功&#xff1f; systemctl start dockersystemctl enable dockerdoc…

HCIE实验这样玩太高级了吧?实现FRR+BFD+OSPF与BGP的联动

号主&#xff1a;老杨丨11年资深网络工程师&#xff0c;更多网工提升干货&#xff0c;请关注公众号&#xff1a;网络工程师俱乐部 晚上好&#xff0c;我的网工朋友。 今天搞个HCIE实验玩玩&#xff0c;上回分享了个张总讲解的防火墙配置实验思路&#xff0c;后来还特地搞了个视…

【电路笔记】-A类放大器

A类放大器 文章目录 A类放大器1、A类放大器概述2、A类放大器基本通用发射极配置3、变压器耦合配置4、总结在 放大器类型简介的文章中,我们介绍了不同类别的放大器。 在本文中,我们将更详细地介绍A类放大器。 在介绍不同的A类放大器配置前,首先的是要记住放大器类别的选择标…

面向优秀SCI论文写作的语言大模型提示词设计

模板1&#xff1a;Abstract 润色 I want you to act as an SCI reviewer and evaluate the abstract of a research paper. You may check if the abstract is well-written and serves as an informative and descriptive overview of the research. You may also check if it…

Centos7网络配置(设置固定ip)

文章目录 1进入虚拟机设置选中【网络适配器】选择【NAT模式】2 进入windows【控制面板\网络和 Internet\网络和共享中心\更改适配器设置】设置网络状态。3 设置VM的【虚拟网络编辑器】4 设置系统网卡5 设置虚拟机固定IP 刚安装完系统&#xff0c;有的人尤其没有勾选自动网络配置…

IOS17闪退问题Assertion failure in void _UIGraphicsBeginImageContextWithOptions

最近项目更新到最新版本IOS17&#xff0c;发现一个以前的页面突然闪退了。原来是IOS17下&#xff0c;这个方法 UIGraphicsBeginImageContext(CGSize size) 已经被移除&#xff0c;原参数如果size为0的话&#xff0c;会出现闪退现象。 根据说明&#xff0c;上述方法已经被替换…

Python + OpenCV 酷游地址教学V鄋KWK3589

本篇文章汇整了一系列的Python OpenCV 教学&#xff0c;只要按照教学文的顺序阅读和实作&#xff0c;就可以轻松入门OpenCV&#xff0c;并透过OpenCV 实现许多影像相关的创意应用。 接下来我们来介绍OpenCV-- OpenCV 是一个跨平台的电脑视觉函式库( 模组) &#xff0c;可应用…

Supabase 自托管部署实践

Supabase 是 Firebase 的开源替代品。使用 Postgres 数据库、身份验证、即时 API、边缘函数、实时订阅、存储和向量嵌入来启动您的项目。 Supabase介绍 Supabase 是一个开源的后端即服务&#xff08;BaaS&#xff09;平台&#xff0c;提供了一系列工具和服务&#xff0c;帮助…

qt中数据库和excel互导数据————附带详细步骤和代码

文章目录 0 背景1 准备QXlsx环境1.1 cmake安装使用1.2 qmake使用 2 把excel数据导出到mysql数据库3 把mysql数据库的数据写入到excel4 完整代码5 项目代码仓库 0 背景 因为需要批量导入和导出数据&#xff0c;所以需要用到excel。实现把数据库的数据导入到excel中&#xff0c;…

matrix-breakout-2-morpheus靶场

1 信息收集 1.1 主机发现 arp-scan -l 1.2 端口与服务扫描 发现开放22、80、81端口 2 访问服务 2.1 访问80端口 查看源代码 2.2 访问81端口 3 目录扫描 3.1 dirsearch目录扫描 dirsearch -u 192.168.1.14 发现robots.txt文件和javascript文件 访问文件 http://192.168…

linux网络命令:httpie详解-简单易用的命令行 HTTP 客户端

目录 一、命令概述 二、基本特点 1、直观和友好的命令语句 2、内置 JSON 支持 3、支持多种请求方法 4、支持 HTTPS、代理和授权验证 5、支持多种请求数据格式 6、自定义 headers 头 7、持久 sessions 存储 8、插件支持 三、安装 1、对于基于 Debian 的系统&#xf…

【你也能从零基础学会网站开发】关系型数据库中的表(Table)设计结构以及核心组成部分

&#x1f680; 个人主页 极客小俊 ✍&#x1f3fb; 作者简介&#xff1a;程序猿、设计师、技术分享 &#x1f40b; 希望大家多多支持, 我们一起学习和进步&#xff01; &#x1f3c5; 欢迎评论 ❤️点赞&#x1f4ac;评论 &#x1f4c2;收藏 &#x1f4c2;加关注 关系型数据库中…

idea 项目互联网转内网开发 依赖报错问题 maven问题

场景&#xff1a; 这个问题困扰好久&#xff0c;通过分析后&#xff0c;发现是maven配置问题&#xff0c;废话不多说&#xff0c;上干活。 问题描述 项目互联网从转内网开发&#xff0c;提前下载好repository&#xff0c;跟项目一起导入内网&#xff0c;导入后&#xff0c;发…

Jasper Report详细使用教程

1、编写jrxml文件 1.1 新建项目 使用Jaspersoft Studio来创建一个项目&#xff0c;如图所示&#xff0c;新建一个项目&#xff0c;步骤&#xff1a; File -> New -> Project->JasperReportsProject 1.2 新建一个Jasper Report模板 找到你新建的项目。步骤&#xff1a;…

昇思25天学习打卡营第6天|简单的深度学习模型实战 - 函数式自动微分

自动微分(Automatic Differentiation)是什么&#xff1f;微分是函数在某一处的导数值&#xff0c;自动微分就是使用计算机程序自动求解函数在某一处的导数值。自动微分可用于计算神经网络反向传播的梯度大小&#xff0c;是机器学习训练中不可或缺的一步。 这些公式难免让人头大…

抛弃 Neofetch?众多优秀替代方案等你体验!

目录 抛弃 Neofetch&#xff1f;众多优秀替代方案等你体验Neofetch 的替代品FastfetchscreenFetchmacchina 抛弃 Neofetch&#xff1f;众多优秀替代方案等你体验 NeoFetch 是用 Bash 3.2 编写的命令行系统信息工具&#xff0c;该项目的主要开发人员已将 GitHub 存储库存档&…

【C++11:右值引用,列表初始化】

统一列表初始化&#xff1a; 构造函数的函数名与函数体之间增加一个列表&#xff0c;用于对成员初始化 在实例化对象时&#xff0c;支持单/多参数的隐式转化&#xff0c;同时也可以省略符号&#xff0c;让代码更简洁 右值的引用 左值&#xff1a; 左值与右值的重要区别就是能…