【python】OpenCV—Aruco

news2025/1/15 13:04:53

在这里插入图片描述

文章目录

  • Detect Aruco
  • Guess Aruco Type

Detect Aruco

学习参考来自:OpenCV基础(19)使用 OpenCV 和 Python 检测 ArUco 标记

更多使用细节可以参考:【python】OpenCV—Color Correction

源码:

链接:https://pan.baidu.com/s/1bEPuiix0MrtL7Fu3paoRug
提取码:123a

在这里插入图片描述

# -----------------------------
#   USAGE
# -----------------------------
# python detect_aruco_image.py --image images/example_01.png --type DICT_5X5_100
# python detect_aruco_image.py --image images/example_02.png --type DICT_ARUCO_ORIGINAL

# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
import argparse
import imutils
import cv2
import sys

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the input image containing the ArUCo tag")
ap.add_argument("-t", "--type", type=str, default="DICT_ARUCO_ORIGINAL", help="Tpe of ArUCo tag to detect")
args = vars(ap.parse_args())

# Define the names of each possible ArUco tag that OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Load the input image from disk and resize it
print("[INFO] Loading image...")
image = cv2.imread(args["image"])
image = imutils.resize(image, width=600)

# Verify that the supplied ArUCo tag exists is supported by OpenCV
if ARUCO_DICT.get(args["type"], None) is None:
    print("[INFO] ArUCo tag of '{}' is not supported!".format(args["type"]))
    sys.exit(0)

# Load the ArUCo dictionary, grab the ArUCo parameters and detect the markers
print("[INFO] Detecting '{}' tags...".format(args["type"]))
arucoDict = cv2.aruco.Dictionary_get(ARUCO_DICT[args["type"]])
arucoParams = cv2.aruco.DetectorParameters_create()
(corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)

# Verify *at least* one ArUCo marker was detected
if len(corners) > 0:
    # Flatten the ArUCo IDs list
    ids = ids.flatten()
    # Loop over the detected ArUCo corners
    for (markerCorner, markerID) in zip(corners, ids):
        # Extract the markers corners which are always returned in the following order:
        # TOP-LEFT, TOP-RIGHT, BOTTOM-RIGHT, BOTTOM-LEFT
        corners = markerCorner.reshape((4, 2))
        (topLeft, topRight, bottomRight, bottomLeft) = corners
        # Convert each of the (x, y)-coordinate pairs to integers
        topRight = (int(topRight[0]), int(topRight[1]))
        bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
        bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
        topLeft = (int(topLeft[0]), int(topLeft[1]))
        # Draw the bounding box of the ArUCo detection
        cv2.line(image, topLeft, topRight, (0, 255, 0), 2)
        cv2.line(image, topRight, bottomRight, (0, 255, 0), 2)
        cv2.line(image, bottomRight, bottomLeft, (0, 255, 0), 2)
        cv2.line(image, bottomLeft, topLeft, (0, 255, 0), 2)
        # Compute and draw the center (x, y) coordinates of the ArUCo marker
        cX = int((topLeft[0] + bottomRight[0]) / 2.0)
        cY = int((topLeft[1] + bottomRight[1]) / 2.0)
        cv2.circle(image, (cX, cY), 4, (0, 0, 255), -1)
        # Draw the ArUco marker ID on the image
        cv2.putText(image, str(markerID), (topLeft[0], topLeft[1] - 15), cv2.FONT_HERSHEY_SIMPLEX,
                    0.5, (0, 255, 0), 2)
        print("[INFO] ArUco marker ID: {}".format(markerID))
        # write the output image
        cv2.imwrite("{}_{}.jpg".format(args["type"], markerID), image)
        # Show the output image
        cv2.imshow("Image", image)
        cv2.waitKey(0)

输入图像

在这里插入图片描述
依次输出 DICT_5X5_100_42
在这里插入图片描述
DICT_5X5_100_24
在这里插入图片描述
DICT_5X5_100_70
在这里插入图片描述
DICT_5X5_100_66
在这里插入图片描述

DICT_5X5_100_87
在这里插入图片描述


再来一组

输入图片

在这里插入图片描述

依次输出

DICT_ARUCO_ORIGINAL_241

在这里插入图片描述

DICT_ARUCO_ORIGINAL_1007

在这里插入图片描述
DICT_ARUCO_ORIGINAL_1001

在这里插入图片描述

DICT_ARUCO_ORIGINAL_923

在这里插入图片描述

演示了如何检测图片,下面是检测视频的代码

# -----------------------------
#   USAGE
# -----------------------------
# python detect_aruco_video.py

# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
from imutils.video import VideoStream
import argparse
import imutils
import time
import cv2
import sys

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-t", "--type", type=str, default="DICT_ARUCO_ORIGINAL", help="Type of ArUCo tag to detect")
args = vars(ap.parse_args())

# Define the names of each possible ArUCo tag that OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Verify that the supplied ArUCo tag exists and is supported by OpenCV
if ARUCO_DICT.get(args["type"], None) is None:
    print("[INFO] ArUCo tag of '{}' is not supported".format(args["type"]))
    sys.exit(0)

# Load the ArUCo dictionary and grab the ArUCo parameters
print("[INFO] Detecting '{}' tags...".format(args["type"]))
arucoDict = cv2.aruco.Dictionary_get(ARUCO_DICT[args["type"]])
arucoParams = cv2.aruco.DetectorParameters_create()

# Initialize the video stream and allow the camera sensor to warm up
print("[INFO] Starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)

# Loop over the frames from the video stream
while True:
    # Grab the frame from the threaded video stream and resize it to have a maximum width of 600 pixels
    frame = vs.read()
    frame = imutils.resize(frame, width=1000)
    # Detect ArUco markers in the input frame
    (corners, ids, rejected) = cv2.aruco.detectMarkers(frame, arucoDict, parameters=arucoParams)
    # Verify *at least* one ArUco marker was detected
    if len(corners) > 0:
        # Flatten the ArUco IDs list
        ids = ids.flatten()
        # Loop over the detected ArUCo corners
        for (markerCorner, markerID) in zip(corners, ids):
            # Extract the marker corners (which are always returned
            # in top-left, top-right, bottom-right, and bottom-left order)
            corners = markerCorner.reshape((4, 2))
            (topLeft, topRight, bottomRight, bottomLeft) = corners
            # Convert each of the (x, y)-coordinate pairs to integers
            topRight = (int(topRight[0]), int(topRight[1]))
            bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
            bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
            topLeft = (int(topLeft[0]), int(topLeft[1]))
            # Draw the bounding box of the ArUCo detection
            cv2.line(frame, topLeft, topRight, (0, 255, 0), 2)
            cv2.line(frame, topRight, bottomRight, (0, 255, 0), 2)
            cv2.line(frame, bottomRight, bottomLeft, (0, 255, 0), 2)
            cv2.line(frame, bottomLeft, topLeft, (0, 255, 0), 2)
            # Compute and draw the center (x, y)-coordinates of the ArUco marker
            cX = int((topLeft[0] + bottomRight[0]) / 2.0)
            cY = int((topLeft[1] + bottomRight[1]) / 2.0)
            cv2.circle(frame, (cX, cY), 4, (0, 0, 255), -1)
            # Draw the ArUco marker ID on the frame
            cv2.putText(frame, str(markerID), (topLeft[0], topLeft[1] - 15),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)
    # Show the output frame
    cv2.imshow("Frame", frame)
    key = cv2.waitKey(1) & 0xFF
    # If the `q` key was pressed, break from the loop
    if key == ord("q"):
        break

# Do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()

Guess Aruco Type

学习参考来自:OpenCV基础(20)使用 OpenCV 和 Python 确定 ArUco 标记类型

源码:

链接:https://pan.baidu.com/s/1DmjKL1tVbQX0YkDUzki2Jw
提取码:123a

# ------------------------
#   USAGE
# ------------------------
#  python guess_aruco_type.py --image images/example_01.png
#  python guess_aruco_type.py --image images/example_02.png
#  python guess_aruco_type.py --image images/example_03.png
# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
import argparse
import imutils
import cv2

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the input image containing ArUCo tag")
args = vars(ap.parse_args())

# Define the names of each possible ArUCo tag that the OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Load the input image from disk and resize it
print("[INFO] Loading image...")
image = cv2.imread(args["image"])
image = imutils.resize(image, width=800)

# Loop over the types of ArUCo dictionaries
for (arucoName, arucoDictionary) in ARUCO_DICT.items():
    # Load the ArUCo dictionary, grab the ArUCo parameters and attempt to detect the markers for the current dictionary
    arucoDict = cv2.aruco.Dictionary_get(arucoDictionary)
    arucoParams = cv2.aruco.DetectorParameters_create()
    (corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)
    # If at least one ArUCo marker was detected display the ArUCo marker and its type name in the terminal
    if len(corners) > 0:
        print("[INFO] Detected {} markers for '{}'".format(len(corners), arucoName))

输入
在这里插入图片描述
输出

[INFO] Loading image...
[INFO] Detected 2 markers for 'DICT_5X5_50'
[INFO] Detected 5 markers for 'DICT_5X5_100'
[INFO] Detected 5 markers for 'DICT_5X5_250'
[INFO] Detected 5 markers for 'DICT_5X5_1000'

输入
在这里插入图片描述

输出

[INFO] Loading image...
[INFO] Detected 1 markers for 'DICT_4X4_50'
[INFO] Detected 1 markers for 'DICT_4X4_100'
[INFO] Detected 1 markers for 'DICT_4X4_250'
[INFO] Detected 1 markers for 'DICT_4X4_1000'
[INFO] Detected 4 markers for 'DICT_ARUCO_ORIGINAL'

输入

在这里插入图片描述

输出

[INFO] Loading image...
[INFO] Detected 5 markers for 'DICT_APRILTAG_36h11'

猜出来了 Aruco 的类型,我们就可以设定检测了

# ------------------------
#   USAGE
# ------------------------
#  python detect_aruco_image_type.py --image images/example_03.png

# -----------------------------
#   IMPORTS
# -----------------------------
# Import the necessary packages
import argparse
import imutils
import cv2
import sys

# Construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True, help="Path to the input image containing ArUCo tag")
args = vars(ap.parse_args())

# Define the names of each possible ArUCo tag that the OpenCV supports
ARUCO_DICT = {"DICT_4X4_50": cv2.aruco.DICT_4X4_50, "DICT_4X4_100": cv2.aruco.DICT_4X4_100,
              "DICT_4X4_250": cv2.aruco.DICT_4X4_250, "DICT_4X4_1000": cv2.aruco.DICT_4X4_1000,
              "DICT_5X5_50": cv2.aruco.DICT_5X5_50, "DICT_5X5_100": cv2.aruco.DICT_5X5_100,
              "DICT_5X5_250": cv2.aruco.DICT_5X5_250, "DICT_5X5_1000": cv2.aruco.DICT_5X5_1000,
              "DICT_6X6_50": cv2.aruco.DICT_6X6_50, "DICT_6X6_100": cv2.aruco.DICT_6X6_100,
              "DICT_6X6_250": cv2.aruco.DICT_6X6_250, "DICT_6X6_1000": cv2.aruco.DICT_6X6_1000,
              "DICT_7X7_50": cv2.aruco.DICT_7X7_50, "DICT_7X7_100": cv2.aruco.DICT_7X7_100,
              "DICT_7X7_250": cv2.aruco.DICT_7X7_250, "DICT_7X7_1000": cv2.aruco.DICT_7X7_1000,
              "DICT_ARUCO_ORIGINAL": cv2.aruco.DICT_ARUCO_ORIGINAL,
              "DICT_APRILTAG_16h5": cv2.aruco.DICT_APRILTAG_16h5,
              "DICT_APRILTAG_25h9": cv2.aruco.DICT_APRILTAG_25h9,
              "DICT_APRILTAG_36h10": cv2.aruco.DICT_APRILTAG_36h10,
              "DICT_APRILTAG_36h11": cv2.aruco.DICT_APRILTAG_36h11}

# Load the input image from disk and resize it
print("[INFO] Loading image...")
image = cv2.imread(args["image"])
image = imutils.resize(image, width=800)

# Verify that the supplied ArUCo tag exists is supported by OpenCV
# if ARUCO_DICT.get(args["type"], None) is None:
#     print("[INFO] ArUCo tag of '{}' is not supported!".format(args["type"]))
#     sys.exit(0)

# Loop over the types of ArUCo dictionaries
for (arucoName, arucoDictionary) in ARUCO_DICT.items():
    # Load the ArUCo dictionary, grab the ArUCo parameters and attempt to detect the markers for the current dictionary
    arucoDict = cv2.aruco.Dictionary_get(arucoDictionary)
    arucoParams = cv2.aruco.DetectorParameters_create()
    (corners, ids, rejected) = cv2.aruco.detectMarkers(image, arucoDict, parameters=arucoParams)
    # If at least one ArUCo marker was detected display the ArUCo marker and its type name in the terminal
    if len(corners) > 0:
        print("[INFO] Detected {} markers for '{}'".format(len(corners), arucoName))
        # Flatten the ArUCo IDs list
        IDS = ids.flatten()
        # Loop over the detected ArUCo corners
        for (markerCorner, markerID) in zip(corners, IDS):
            # Extract the markers corners which are always returned in the following order:
            # TOP-LEFT, TOP-RIGHT, BOTTOM-RIGHT, BOTTOM-LEFT
            corners = markerCorner.reshape((4, 2))
            (topLeft, topRight, bottomRight, bottomLeft) = corners
            # Convert each of the (x, y)-coordinate pairs to integers
            topRight = (int(topRight[0]), int(topRight[1]))
            bottomRight = (int(bottomRight[0]), int(bottomRight[1]))
            bottomLeft = (int(bottomLeft[0]), int(bottomLeft[1]))
            topLeft = (int(topLeft[0]), int(topLeft[1]))
            # Draw the bounding box of the ArUCo detection
            cv2.line(image, topLeft, topRight, (0, 255, 0), 2)
            cv2.line(image, topRight, bottomRight, (0, 255, 0), 2)
            cv2.line(image, bottomRight, bottomLeft, (0, 255, 0), 2)
            cv2.line(image, bottomLeft, topLeft, (0, 255, 0), 2)
            # Compute and draw the center (x, y) coordinates of the ArUCo marker
            cX = int((topLeft[0] + bottomRight[0]) / 2.0)
            cY = int((topLeft[1] + bottomRight[1]) / 2.0)
            cv2.circle(image, (cX, cY), 4, (0, 0, 255), -1)
            # Get marker type name
            markerType = "{} -> {}".format(markerID, arucoName)
            # Draw the ArUco marker ID on the image
            cv2.putText(image, str(markerType), (topLeft[0], topLeft[1] - 15), cv2.FONT_HERSHEY_SIMPLEX, 0.5,
                        (0, 255, 0), 2)
            print("[INFO] ArUco marker ID: {}".format(markerID))

            # Write the output image
            cv2.imwrite(f"{markerID}_{arucoName}.jpg", image)
            # Show the output image
            cv2.imshow("Image", image)
            cv2.waitKey(0)

输入

在这里插入图片描述

依次输出

7_DICT_APRILTAG_36h11
在这里插入图片描述
3_DICT_APRILTAG_36h11
在这里插入图片描述

5_DICT_APRILTAG_36h11
在这里插入图片描述

14_DICT_APRILTAG_36h11

在这里插入图片描述
8_DICT_APRILTAG_36h11
在这里插入图片描述

再看看另外一个的案例

DICT_5X5_100
在这里插入图片描述

87_DICT_5X5_250
在这里插入图片描述

87_DICT_5X5_1000

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1875119.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

二进制方式部署consul单机版

1.consul的下载 mkdir -p /root/consul/data && cd /root/consul wget https://releases.hashicorp.com/consul/1.18.0/consul_1.18.0_linux_amd64.zip unzip consul_1.18.0_linux_amd64.zip mv consul /usr/local/bin/ 2.配置文件 // 配置文件路径: /roo…

Vue 项目运行时,报错Error: Cannot find module ‘node:path‘

Vue 项目运行时,报错Error: Cannot find module ‘node:path’ internal/modules/cjs/loader.js:883throw err;^Error: Cannot find module node:path Require stack: - D:\nodejs\node_modules\npm\node_modules\node_modules\npm\lib\cli.js - D:\nodejs\node_mo…

240628_昇思学习打卡-Day10-SSD目标检测

240628_昇思学习打卡-Day10-SSD目标检测 今天我们来看SSD(Single Shot MultiBox Detector)算法,SSD是发布于2016年的一种目标检测算法,使用的是one-stage目标检测网络,意思就是说它只需要一步,就能把目标检…

国内多个库被 rsc 钉上 Go 耻辱柱。。。

大家好,我是煎鱼。 这还是比较突然的,下午正努力打工。国内社区群里突然就闹腾起来了。 仔细一看,原来是 Go 核心团队负责人 rsc,又冷不丁搞大招 😅。他直接把国内好几个知名库给直接钉上了 Go 源码库的耻辱柱上了。 如…

普元EOS学习笔记-EOS8.3精简版安装

前言 普元EOS是优秀的高低开结合的企业应用软件开发框架。 普元:这是普元公司的名字,普元信息,上市公司哦,这里就不过多安利了。 EOS:普元公司的企业应用开发系统,开发语言是基于Java,技术框…

JavaScript(2)——输入输出和执行顺序

目录 JS的输入输出语法 输出: 输入 JS的代码执行顺序 字面量 JS的输入输出语法 输出: document.write(内容)alert(内容) 页面弹出警告框console.log(内容) 控制台输出语法,程序员调试使用 作用:向body输出内容 注意&…

zabbix-server的搭建

zabbix-server的搭建 部署 zabbix 服务端(192.168.99.180) rpm -ivh https://mirrors.aliyun.com/zabbix/zabbix/5.0/rhel/7/x86_64/zabbix-release-5.0-1.el7.noarch.rpm cd /etc/yum.repos.d sed -i s#http://repo.zabbix.com#https://mirrors.aliyun.com/zabbix# zabbix.r…

音频分离人声和伴奏可以实现吗?手机人声分离工具10款无偿分享!

随着科技的飞速发展,音频处理技术已经取得了显著的进步,其中音频分离人声和伴奏已成为现实。这一技术不仅为音乐制作人和音频工程师提供了便利,更为广大音乐爱好者提供了无限的创作可能性。本文将为大家分享10款手机人声分离工具,…

前端面试题(基础篇十二)

一、link标签定义、与import的区别 link 标签定义文档与外部资源的关系。 link 元素是空元素,它仅包含属性。 此元素只能存在于 head 部分,不过它可出现任意数。 link 标签中的 rel 属性定义了当前文档与被链接文档之间的关系。常见的 stylesheet 指的是…

C# 警告 warning MSB3884: 无法找到规则集文件“MinimumRecommendedRules.ruleset”

警告 warning MSB3884: 无法找到规则集文件“MinimumRecommendedRules.ruleset” C:\Program Files\Microsoft Visual Studio\2022\Professional\MSBuild\Current\Bin\amd64\Microsoft.CSharp.CurrentVersion.targets(129,9): warning MSB3884: 无法找到规则集文件“MinimumRe…

好书速览-深入理解JVM-Part1

文章目录 第二章、Java内存区域与内存溢出异常2.1 概述2.2 运行时数据区域程序计数器(program Counter Register)Java虚拟机栈本地方法栈堆方法区运行时常量池直接内存 2.3 对象生命周期2.3.1 对象的创建2.3.2 对象的内存布局对象头类型指针对齐填充 2.3.3 对象的访…

WordPress免费模板:惊艳动态效果,打造视觉盛宴

WordPress免费模板:惊艳动态效果,打造视觉盛宴 我们为您带来了一款独具特色的WordPress免费模板,这款模板以其独特的动态效果设计,特别是引人注目的动态banner图片效果,为您的网站注入活力,打造一场视觉盛…

某配送平台未授权访问和弱口令(附赠nuclei默认密码验证脚本)

找到一个某src的子站,通过信息收集插件,发现ZABBIX-监控系统,可以日一下 使用谷歌搜索历史漏洞:zabbix漏洞 通过目录扫描扫描到后台,谷歌搜索一下有没有默认弱口令 成功进去了,挖洞就是这么简单 搜索文章还…

定时触发-uniapp + uniCloud 订阅消息实战教程(三)

上一节已经对云函数有了一定的了解,但是,为了发送订阅消息,只会云函数还是差了那么一点意思,所以接下来的这一节,将带领大家熟悉一下定时触发。 熟悉定时触发 如果云函数需要定时/定期执行,即定时触发,您可以使用云函数定时触发器。已配置定时触发器的云函数,会在相应…

SwiftUI八与UIKIT交互

代码下载 SwiftUI可以在苹果全平台上无缝兼容现有的UI框架。例如,可以在SwiftUI视图中嵌入UIKit视图或UIKit视图控制器,反过来在UIKit视图或UIKit视图控制器中也可以嵌入SwiftUI视图。 本文展示如何把landmark应用的主页混合使用UIPageViewController和…

CXL:拯救NVMe SSD缓存不足设计难题-2

LMB提出了基于CXL协议的内存扩展框架和内核模块。该方案利用CXL内存扩展器作为物理DRAM源,旨在提供一个统一的内存分配接口,使PCIe和CXL设备都能方便地访问扩展的内存资源。通过这个接口,NVMe驱动和CUDA的统一内存内核驱动可以直接高效地访问…

telegram mini APP或游戏开发之bot设置

无意中发现telegram上居然也能发布小程序和游戏了,感觉发现了新大陆一样,自己好玩试了下。 参考教程 更详细的免费文章,请查看博客:https://lengmo714.top/6e79860b.html 要在telegram上开发一个mini App或者game,创建一个专属于你的机器人就必不可少了。 创建bot机器人 …

IoTDB Committer+Ratis PMC Member:“两全其美”的秘诀是?

IoTDB & Ratis 双向深耕! 还记得一年前我们采访过拥有 IoTDB 核心研发 Ratis Committer “双重身份”的社区成员宋子阳吗?(点此阅读) 我们高兴地发现,一年后,他在两个项目都更进一步,已成为…

MapReduce学习

目录 7.3 MapReduce工作流程 7.3.1 工作流程概述 7.3.2 MapReduce各个执行阶段 7.3.3 Shuffle过程详解 1. Shuffle过程简介(过程分为Map端的操作和Reduce端的操作) 2、Map端的Shuffle过程: 3、在Reduce端的Shuffle过程 7.4 实例分析&am…

Drag Select Compose:实现多平台图片多选功能的利器

Drag Select Compose:实现多平台图片多选功能的利器 在现代移动应用开发中,图片多选功能是一个常见且实用的需求。而实现这种功能可能涉及到复杂的手势处理和状态管理。今天,我将介绍一款强大的Compose多平台库——Drag Select Compose,它能够轻松实现类似于Google Photos…