学AI还能赢奖品?每天30分钟,25天打通AI任督二脉 (qq.com)
环境配置
%%capture captured_output
# 实验环境已经预装了mindspore==2.2.14,如需更换mindspore版本,可更改下面mindspore的版本号
!pip uninstall mindspore -y
!pip install -i https://pypi.mirrors.ustc.edu.cn/simple mindspore==2.2.14
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
!pip install mindnlp
!pip show mindspore
基于 MindSpore 实现 BERT 对话情绪识别
模型简介
BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自然语言推理、文本分类等在许多自然语言处理任务中发挥着重要作用。模型是基于Transformer中的Encoder并加上双向的结构,因此一定要熟练掌握Transformer的Encoder的结构。
BERT模型的主要创新点都在pre-train方法上,即用了Masked Language Model和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。
在用Masked Language Model方法训练BERT的时候,随机把语料库中15%的单词做Mask操作。对于这15%的单词做Mask操作分为三种情况:80%的单词直接用[Mask]替换、10%的单词直接替换成另一个新的单词、10%的单词保持不变。
因为涉及到Question Answering (QA) 和 Natural Language Inference (NLI)之类的任务,增加了Next Sentence Prediction预训练任务,目的是让模型理解两个句子之间的联系。与Masked Language Model任务相比,Next Sentence Prediction更简单些,训练的输入是句子A和B,B有一半的几率是A的下一句,输入这两个句子,BERT模型预测B是不是A的下一句。
BERT预训练之后,会保存它的Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。使用预训练好的BERT模型可以对下游任务进行Fine-tuning,比如:文本分类、相似度判断、阅读理解等。
对话情绪识别(Emotion Detection,简称EmoTect),专注于识别智能对话场景中用户的情绪,针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。
下面以一个文本情感分类任务为例子来说明BERT模型的整个应用过程。
import os
import mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nn, context
from mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracy
# prepare dataset
class SentimentDataset:
"""Sentiment Dataset"""
def __init__(self, path):
self.path = path
self._labels, self._text_a = [], []
self._load()
def _load(self):
with open(self.path, "r", encoding="utf-8") as f:
dataset = f.read()
lines = dataset.split("\n")
for line in lines[1:-1]:
label, text_a = line.split("\t")
self._labels.append(int(label))
self._text_a.append(text_a)
def __getitem__(self, index):
return self._labels[index], self._text_a[index]
def __len__(self):
return len(self._labels)
数据集
这里提供一份已标注的、经过分词预处理的机器人聊天数据集,来自于百度飞桨团队。数据由两列组成,以制表符('\t')分隔,第一列是情绪分类的类别(0表示消极;1表示中性;2表示积极),第二列是以空格分词的中文文本,如下示例,文件为 utf8 编码。
label--text_a
0--谁骂人了?我从来不骂人,我骂的都不是人,你是人吗 ?
1--我有事等会儿就回来和你聊
2--我见到你很高兴谢谢你帮我
这部分主要包括数据集读取,数据格式转换,数据 Tokenize 处理和 pad 操作。
# download dataset
!wget https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz -O emotion_detection.tar.gz
!tar xvf emotion_detection.tar.gz
数据加载和数据预处理
新建 process_dataset 函数用于数据加载和数据预处理,具体内容可见下面代码注释。
import numpy as np
def process_dataset(source, tokenizer, max_seq_len=64, batch_size=32, shuffle=True):
is_ascend = mindspore.get_context('device_target') == 'Ascend'
column_names = ["label", "text_a"]
dataset = GeneratorDataset(source, column_names=column_names, shuffle=shuffle)
# transforms
type_cast_op = transforms.TypeCast(mindspore.int32)
def tokenize_and_pad(text):
if is_ascend:
tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)
else:
tokenized = tokenizer(text)
return tokenized['input_ids'], tokenized['attention_mask']
# map dataset
dataset = dataset.map(operations=tokenize_and_pad, input_columns="text_a", output_columns=['input_ids', 'attention_mask'])
dataset = dataset.map(operations=[type_cast_op], input_columns="label", output_columns='labels')
# batch dataset
if is_ascend:
dataset = dataset.batch(batch_size)
else:
dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),
'attention_mask': (None, 0)})
return dataset
昇腾NPU环境下暂不支持动态Shape,数据预处理部分采用静态Shape处理:
from mindnlp.transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
tokenizer.pad_token_id
dataset_train = process_dataset(SentimentDataset("data/train.tsv"), tokenizer)
dataset_val = process_dataset(SentimentDataset("data/dev.tsv"), tokenizer)
dataset_test = process_dataset(SentimentDataset("data/test.tsv"), tokenizer, shuffle=False)
dataset_train.get_col_names()
print(next(dataset_train.create_tuple_iterator()))
下载并解压了一个已标注的数据集,该数据集包含了情绪分类的标签和相应的文本。
数据集被加载并转换为适合模型训练的格式,包括文本的Tokenization和Padding操作。
模型构建
通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。
from mindnlp.transformers import BertForSequenceClassification, BertModel
from mindnlp._legacy.amp import auto_mixed_precision
# set bert config and define parameters for training
model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=3)
model = auto_mixed_precision(model, 'O1')
optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)
metric = Accuracy()
# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='bert_emotect', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='bert_emotect_best', auto_load=True)
trainer = Trainer(network=model, train_dataset=dataset_train,
eval_dataset=dataset_val, metrics=metric,
epochs=5, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb])
%%time
# start training
trainer.run(tgt_columns="labels")
针对BERT模型进行微调(Fine-tuning)。
使用`BertForSequenceClassification.from_pretrained`从预训练模型中加载BERT模型,在这里,使用了一个已经预训练好的中文BERT模型`'bert-base-chinese'`。
使用`auto_mixed_precision`函数将模型转换为自动混合精度(Auto Mixed Precision),可以在训练过程中提高计算效率。
使用Adam优化器,并设置了学习率为2e-5,用于模型的参数更新。
定义了评价指标`metric`,在模型训练过程中用于评估模型的性能。
通过CheckpointCallback
和BestModelCallback
设置回调函数,CheckpointCallback
用于在训练期间保存模型的检查点,BestModelCallback
用于保存表现最好的模型并支持自动加载。
创建Traine`对象trainer,将模型、训练数据集、验证数据集、优化器、评价指标和回调函数传递给它,训练的epochs=5。通过调用trainer.run()方法,对BERT模型进行训练。tgt_columns="labels"
指定训练目标列,即模型试图预测的标签。
%%time魔术命令计时,可以查看训练的运行时间。
模型验证
将验证数据集加再进训练好的模型,对数据集进行验证,查看模型在验证数据上面的效果,此处的评价指标为准确率。
evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")
使用Evaluator
类对模型进行验证,评估在验证集上的表现。
模型推理
遍历推理数据集,将结果与标签进行统一展示。
dataset_infer = SentimentDataset("data/infer.tsv")
def predict(text, label=None):
label_map = {0: "消极", 1: "中性", 2: "积极"}
text_tokenized = Tensor([tokenizer(text).input_ids])
logits = model(text_tokenized)
predict_label = logits[0].asnumpy().argmax()
info = f"inputs: '{text}', predict: '{label_map[predict_label]}'"
if label is not None:
info += f" , label: '{label_map[label]}'"
print(info)
from mindspore import Tensor
for label, text in dataset_infer:
predict(text, label)
定义函数predict
,用于对新的文本进行情绪分类。
遍历推理数据集,使用模型对每个文本进行预测,并与真实标签进行比较。
自定义推理数据集
自己输入推理数据,展示模型的泛化能力。
predict("家人们咱就是说一整个无语住了 绝绝子叠buff")
输入任意文本,输出预测的情绪类别。
应用实践案例使用MindSpore实现一个基于BERT的情绪识别模型,有助于理解BERT模型的构建和Fine-tuning过程。实现过程中,用MindSpore的Trainer、Evaluator类对模型进行训练、验证,使用MindSpore的AMP(自动混合精度)加速训练过程。使用MindSpore的CheckpointCallback、BestModelCallback来保存模型。最后用predict推理,对文本进行情绪分类。