【Text2SQL 论文】MCS-SQL:利用多样 prompts + 多项选择来做 Text2SQL

news2025/2/24 15:24:02

论文:MCS-SQL: Leveraging Multiple Prompts and Multiple-Choice Selection For Text-to-SQL Generation

⭐⭐⭐

arXiv:2405.07467

一、论文速读

已有研究指出,在使用 LLM 使用 ICL 时,ICL 的 few-shot exemplars 的内容、呈现顺序都会敏感地影响 LLM 的输出。基于此,本文提出通过使用多个 prompts 并利用 LLM 的 ICL exemplars 的敏感性,来扩大 LLM 的搜索空间,得到 LLM 的多个响应 SQL,然后再做一个多项选择,从中选出最终的 SQL 作为输出

MCS-SQL 模型包含三个主要步骤:

  1. schema linking:筛选出相关的 DB schema
  2. multiple SQL generation:利用多个 prompts 来让 LLM 生成多个 SQL
  3. multiple choice selection:从多个 SQL 中选出最终的 SQL

二、MCS-SQL 模型

这里分别介绍这个模型的三个步骤。

2.1 Schema Linking

Schema Linking 就是识别出与 question 相关的 DB tables 和 columns。这里分成两步来做:先 table linking,再 column linking。

Table Linking:将 question、DB schema 给 LLM,让 LLM 以 JSON 格式输出选出的 tables 以及理由。一个 prompt 示例如下图。为了鲁棒性,这一步使用了 p t p_t pt 个 prompts,每个 prompt 让 LLM 生成 n 次响应,共得到 p t ⋅ n p_t \cdot n ptn 个响应结果,然后取并集作为最终筛选结果。

在这里插入图片描述

Column Linking:也是 prompt LLM 来做,prompt 中只包含筛选后的 tables 的 schema。指示 LLM 输出 [table-name].[col-name] 格式的答案,以防止命名冲突。一个 prompt 示例如下图。具体上,也是有 p c p_c pc 个 prompts,每个让 LLM 生成 n 次响应,共得到 p c ⋅ n p_c \cdot n pcn 个响应结果,然后取并集作为最终筛选结果。

在这里插入图片描述

2.2 Multiple SQL Generation

为了利用 LLM 对 ICL exemplars 的敏感性,这里通过变换 exemplars 的选择结果和呈现顺序,来得到多个 prompts。

这里先做 Few-shot Examples Selection,具体来说有两种 selection 方法:

  1. 利用 question similarity:将 question 作为 keyword 进行相似度检索,从而在 training set 中检索到 examples。
  2. 利用 masked question similarity:去掉 question 中的 schema-specific content 在进行相似度检索,这样能够让检索更加关注 question 的结构形式

这里会两种方法都使用,从而得到多个 prompts。

有了 prompt,就可以做 SQL Generation,prompt 中包含 few-shot examples、DB schema、rows 示例以及 user question,如下:

### Generate the correct SQL query for a given DB schema and question.

### Gold Examples:
- Question: ...
- Gold SQL: ...
...

### DB Schema: ...
### Sample Table Contents: ...
### Question: ...

Your answer should be in the json format:
{
  "reasoning": ".."  # The reasoning steps behind the generated SQL query
  "sql": ".."  # The generated SQL query.
}

### Your answer:

其中 rows 示例使用 CSV 格式来展示。在输出时,还引导 LLM 解释它生成 SQL 的推理步骤。

由于有多个 prompts,这里使用较高的采样温度来让 LLM 做生成,从而得到 p q ⋅ n p_q \cdot n pqn 个候选 SQL。

2.3 Selection

这一步是从候选 SQL 中选出最准确的 SQL query。

整体的思路是:先基于 confidence score 从 candidate pool 做一次过滤,然后再使用 LLM 从 refined pool 中选出最精确的 SQL。

2.3.1 Candidate Filtering

这里先执行所有候选 SQL,然后将查询结果相同的被分组在一起,每组只保留查询最快的 SQL。

然后就再计算每个 SQL 的 confidence scores,N 个 SQL { q 1 , … , q N } \{q_1, \dots, q_N \} {q1,,qN} 的 scores 计算方式如下:

image-20240626220816966

  • 其中 exec(q) 指的是 SQL query q q q 的执行结果

计算出 scores 后,将低于阈值 T 的 SQL 排除掉。

2.3.2 Multiple-Choice Selection (MCS)

经过上一层过滤后,这一步再利用 LLM 通过做多项选择来从候选 SQL 中选出最准确的 SQL。所使用的 prompt 如下:

### For a given DB schema and question, select the most accurate query among the candidate SQL queries.

### DB schema: ...
### Question: ...
### Candidate SQLs:
1. SQL1
2. SQL2
3. SQL3

Your answer should be in the json format:
{
  "reasoning": ".." # The reasoning steps for selecting the correct SQL query.
  "sql": ".." # The selected SQL query.
}

### Your answer:

在这里,LLM 不仅需要选择出 SQL query,还需要提供选择这个 SQL 的原因。

使用这一个 prompt 来让 LLM 生成 n 个响应,然后通过多数投票确定最终的 SQL query 结果。

三、总结

本文通过多个 prompts 让 LLM 多次生成,并通过过滤选择得到最终 SQL,效果在 BIRD 数据集上表现很好。

ompt 来让 LLM 生成 n 个响应,然后通过多数投票确定最终的 SQL query 结果。

三、总结

本文通过多个 prompts 让 LLM 多次生成,并通过过滤选择得到最终 SQL,效果在 BIRD 数据集上表现很好。

但是本文方法有个明显缺点:调用 LLM 的次数实在是太多了,这需要进一步优化。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1866282.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Apple - View Programming Guide

本文翻译整理自:View Programming Guide(更新:2013-08-08 https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/CocoaViewsGuide/Introduction/Introduction.html#//apple_ref/doc/uid/TP40002978-CH1-SW1 文章目录…

Java学习笔记(多线程):CompetableFuture

本文是自己的学习笔记,主要参考资料如下 https://www.cnblogs.com/dolphin0520/p/3920407.html JavaSE文档 https://blog.csdn.net/ThinkWon/article/details/102508721 1、Overview2、重要参数3、主要方法3.1、创建实例,获取返回值3.2、线程执行顺序相关…

基于Springboot+Vue的校友社交系统(带1w+文档)

基于SpringbootVue的校友社交系统(带1w文档) 校友社交系统作为一种典型的管理系统也迅速的发展并深入人们的日常生活中,它使用户足不出户就可以管理自己的校友社交信息等,最大化减缩了用户的管理时间,提高了管理效率。 项目简介 基于SSMVUE的…

【TB作品】MSP430G2553,单片机,口袋板, 烘箱温度控制器

题3 烘箱温度控制器 设计一个基于MSP430的温度控制器,满足如下技术指标: (1)1KW 电炉加热,最度温度为110℃ (2)恒温箱温度可设定,温度控制误差≦2℃ (3)实时显…

llm-universe | 四. 构建RAG应用

构建RAG应用 一.将LLM 接入 LangChain二.构建检索问答链1.加载向量数据库2.创建一个 LLM3.构建检索问答链4.检索问答链效果测试5.添加历史对话的记忆功能5.1 记忆(Memory)5.2 对话检索链(ConversationalRetrievalChain) 三. 部署知…

【论文阅读】-- Temporal Summary Images:通过交互式注释生成和放置实现叙事可视化的方法

Temporal Summary Images: An Approach to Narrative Visualization via Interactive Annotation Generation and Placement 摘要1 引言2 背景及相关工作2.1 叙事可视化和讲故事2.2 显示面向时间的数据2.3 小倍数和漫画2.4 注释可视化 3 设计要求和工作流程3.1 工作流程3.2 TSI…

input()函数——输入

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 语法参考 input()函数可以提示并接收用户的输入,将所有的输入按照字符串进行处理,并返回一个字符串,input()函数的…

C3P0数据库连接池

目录 一:连接池介绍 1.1连接池解决的问题 2.常用的数据库连接池 二:c3p0介绍 2.1C3P0介绍: 2.2C3P0快速入门 1.常用参数说明 2.API介绍 3.使用步骤 1.导入jar包c3p0-0.9.1.2.jar 2.编写c3p0-config.xml配置文件,配置对…

统信UOS上鼠标右键菜单中添加自定义内容

原文链接:统信UOS上鼠标右键菜单中添加自定义内容 Hello,大家好啊!今天给大家带来一篇关于在统信UOS桌面操作系统上鼠标右键菜单中添加自定义内容的文章。通过自定义鼠标右键菜单,可以大大提升日常操作的效率和便捷性。本文将详细…

KVM网络模式设置

一、KVM网络模式介绍 1、NAT ( 默认上网 ) 虚拟机利用host机器的ip进行上网,对外显示一个ip;virbr0是KVM 默认创建的一个 Bridge,其作用是为连接其上的虚机网卡提供NAT访问外网的功能,默认ip为192.168.122.1 2、自带的Bridge 将虚拟机桥接到host机器的网卡上,vm和ho…

SOA和ESB介绍

SOA(面向服务的架构) 面向服务的架构(Service-Oriented Architecture,SOA)是一种设计理念,用于构建松耦合的、可互操作的、模块化的服务。在SOA架构中,应用程序被划分为一系列的服务&#xff0c…

202485读书笔记|《我还有一片风景要完成》——溪水急着要流向海洋 浪潮却渴望重回土地 弱水长流,我只能尽一瓢饮,世界大千,我只能作一瞬观

202485读书笔记|《我还有一片风景要完成》——溪水急着要流向海洋 浪潮却渴望重回土地 弱水长流,我只能尽一瓢饮,世界大千,我只能作一瞬观 《华语散文温柔的一支笔:张晓风作品集(共5册)》张晓风&#xff0c…

分享一个微信管理工具

聚合管理多个微信号 1、聚合聊天 支持多微信账号消息,在统一端口接收回复 2、话题素材库 可提前把话题准备好用到的时候一键发送 3、朋友圈互动 支持在聊天窗口直接看到当前客户朋友圈实时点赞评论互动 批量多号添加好友 1、批量添加联系人,导入联系…

C#基于SkiaSharp实现印章管理(2)

上一篇文章最后提到基于System.Text.Json能够序列化SKColor对象,但是反序列化时却无法解析本地json数据。换成Newtonsoft.Json进行序列化和反序列化也是类似的问题。   通过百度及查看微软的帮助文档,上述情况下需自定义转换类以处理SKColor类型数据的…

java的字节符输出流基类、File Writer类和Buffered Writer类

一、字节符输出流基类:Writer 1.属于抽象类 2.常用方法 二、字节符输出流Flie Writer类 1.是writer类的子类 2.以字符为数据处理单元向文本文件中写数据 3.示例 4.实现步骤 三、BufferedWriter类 1.是Writer类的子类。 2.带有缓冲区 默认情况下&#xff0c…

游戏AI的创造思路-技术基础-深度学习(6)

让人工智障具备信念吧,依莫拉萨~~~串频道暴露年龄。。。不过深度信念和信念真的没啥关系,不知道为啥这样起名 目录 3.6. 深度信念网络(DBN) 3.6.1. 定义 3.6.2. 发展历史 3.6.3. 算法公式 3.6.4. 运行原理 3.6.4.1. 基本原理 3.6.4.2. Python实现…

Spring统一功能

文章目录 一、什么是统一功能二、拦截器2.1 什么是拦截器2.2 拦截器的使用2.3 案例:不拦截前端的请求2.4 拦截器是如何实现的 ---- >分析DispatcherServlet源码分析 三、适配器模式四、统一数据返回格式五、统一异常六、案例:在图书管理系统使用统一功…

重大进展!微信支付收款码全场景接入银联网络

据中国银联6月19日消息,近日,银联网络迎来微信支付收款码场景的全面接入,推动条码支付互联互通取得新进展,为境内外广大消费者提供更多支付选择、更好支付体验。 2024年6月,伴随微信支付经营收款码的开放,微…

【low-ui-vue】实现原生可扩展动态表格组件

本文字数:3520字 预计阅读时间:20分钟 所谓动态列的表格,就是列数不固定。像广为使用的elementUI的table组件就是表头写死的,这种也叫列数固定的表格。 01 效果 当然,动态性增加了,当然要做出一定“牺牲”。…

sys.stdin对象——实现标准输入

自学python如何成为大佬(目录):https://blog.csdn.net/weixin_67859959/article/details/139049996?spm1001.2014.3001.5501 语法参考 sys.stdin是一个标准化输入对象,可以连续输入或读入文件所有内容,不结束,不能直接使用。输入完成后&am…