新闻管理与推荐系统Python+Django+协同过滤推荐算法+管理系统

news2024/11/26 18:50:15

一、介绍

新闻管理与推荐系统。本系统使用Python作为主要开发语言开发的一个新闻管理与推荐的网站平台。
网站前端界面采用HTML、CSS、BootStrap等技术搭建界面。后端采用Django框架处理用户的逻辑请求,并将用户的相关行为数据保存在数据库中。通过Ajax技术实现前后端的数据通信。
创新点:项目中使用基于用户的协同过滤推荐算法通过用户对文章的评分作为推荐数据基础,通过计算相似度实现对当前登录用户的个性化推荐。
主要功能有:

  • 系统分为管理员和用户两个角色
  • 用户可以登录、注册、查看文章、收藏文章、点赞文章、发布评论、对文章评分、查看个人收藏、编辑个人信息、个性化推荐等功能
  • 管理员在后台系统中可以对用户和文章信息进行管理

二、系统效果图片展示

img_06_22_13_52_15

img_06_22_13_52_28

img_06_22_13_52_58

img_06_22_13_53_15

三、演示视频 and 代码 and 安装

地址:https://www.yuque.com/ziwu/yygu3z/xl0zlgglmrw7wqdf

四、协同过滤推荐算法介绍

协同过滤是一种推荐算法,主要通过分析用户与其他用户之间的相似性以及用户对项目的历史行为来进行推荐。它可以分为两种主要类型:用户基协同过滤和物品基协同过滤。
用户基协同过滤:这种方法依据用户之间的相似性来进行推荐。算法首先计算用户之间的相似度,常用的相似度计算方法包括皮尔逊相关系数、余弦相似性等。基于一个用户的相似用户(邻居)的喜好,推断此用户可能喜欢的项目。
物品基协同过滤:与用户基协同过滤相反,这种方法依据物品之间的相似性来推荐物品。算法计算物品之间的相似度,然后根据用户之前对某物品的评价,推荐与之相似的其他物品。
下面,我们用Python实现一个简单的用户基协同过滤推荐系统。假设我们有一组用户对电影的评分数据,我们将使用皮尔逊相关系数来计算用户之间的相似性,并推荐电影。

import numpy as np
from scipy.stats import pearsonr

# 评分矩阵,行代表用户,列代表电影
ratings = np.array([
    [5, 4, 1, 0, 0],
    [4, 5, 2, 0, 0],
    [0, 0, 0, 4, 5],
    [0, 0, 0, 5, 4],
    [0, 0, 5, 4, 0]
])

def recommend_movies(user_index, num_recommendations=2):
    # 计算目标用户与其他用户的皮尔逊相关系数
    similarities = []
    for i in range(ratings.shape[0]):
        if i != user_index:
            sim = pearsonr(ratings[user_index], ratings[i])[0]
            similarities.append((i, sim))

    # 根据相似度排序
    similarities.sort(key=lambda x: x[1], reverse=True)

    # 从最相似的用户中获取推荐
    top_users = similarities[:num_recommendations]
    recommended_movies = []

    for user, _ in top_users:
        # 找出此用户评分高但目标用户未评分的电影
        for movie_index in np.where(ratings[user] > 3)[0]:
            if ratings[user_index][movie_index] == 0:
                recommended_movies.append(movie_index)

    return np.unique(recommended_movies)

# 对用户0推荐电影
recommended_movies = recommend_movies(0)
print("推荐的电影索引:", recommended_movies)

这段代码首先定义了一个评分矩阵,然后实现了一个推荐函数,它根据用户的相似性来推荐电影。我们使用了皮尔逊相关系数来衡量相似性,并推荐了相似用户高评分但目标用户未观看的电影。这只是一个非常基础的实现,实际应用中还需要考虑更多因素,如处理数据稀疏性、扩展到大规模数据集等。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1852088.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

mayavi pyqt 实例

目录 安装: 示例代码: 生成3d检测框: 安装: pip install pyqt5 mayavi traits traitsui 示例代码: import sys from PyQt5.QtWidgets import QApplication, QMainWindow, QVBoxLayout, QWidget, QPushButton from …

区块链中nonce是什么,什么作用

目录 区块链中nonce是什么,什么作用 区块链中nonce是什么,什么作用 Nonce在以太坊中是一个用于确保交易顺序性和唯一性的重要参数。以下是对Nonce的详细解释: 定义 Nonce是一个scalar值,它等于从该地址发送的交易数量,或在具有关联代码的账户的情况下,由该账户创建的合…

【Flutter 专题】112 图解自定义 ACEPieWidget 饼状图 (一)

类别选项球;切割绘制饼状图;饼状图中绘制文字; 1. 类别选项球 对于两侧不同颜色类别选项卡,仅需要简单设置一下 Container 的 decoration 装饰器即可,只是方便用户查看饼状图分类而已; return Container…

不用写一行代码,deepseek结合腾讯云语音识别来批量转录Mp3音频

首先,打开window系统中的cmd命令行工具,或者powershell,安装腾讯云tencentcloud的Python库 pip install -i https://mirrors.tencent.com/pypi/simple/ --upgrade tencentcloud-sdk-python 然后,开通腾讯云的对象存储COS服务&…

【小沐学AI】Python实现语音识别(Whisper-Web)

文章目录 1、简介2、下载2.1 openai-whisper2.2 whisper-web 结语 1、简介 https://openai.com/index/whisper/ Whisper 是一种自动语音识别 (ASR) 系统,经过 680,000 小时的多语言和多任务监督数据的训练,从网络上收集。我们表…

【大数据 复习】第8章 Hadoop架构再探讨

一、概念 1.Hadoop1.0的核心组件(仅指MapReduce和HDFS,不包括Hadoop生态系统内的Pig、Hive、HBase等其他组件),主要存在以下不足: (1)抽象层次低,需人工编码 (2&#xf…

Docker常用命令与实战示例

docker 1. 安装2. 常用命令3. 存储4. 网络5. redis主从复制示例6. wordpress示例7. DockerFile8. 一键安装超多中间件(compose) 1. 安装 以centOS系统为例 # 移除旧版本docker sudo yum remove docker \docker-client \docker-client-latest \docker-c…

AI时代的音乐革命:创作更简单,灵魂在哪里?

#AI在创造还是毁掉音乐# 我是李涛,一名音乐创作者,最近一直在思考一个问题:AI到底是在创造音乐,还是在毁掉音乐? 几个月前,我第一次接触到AI音乐创作工具。它让我震惊,只需要输入几个关键词&a…

数据结构7---图

一、定义 对于图的定义,我们需要明确几个注意的地方:一线性表中我们把数据元素叫元素,树中叫结点,在途中数据元素我们则称之为顶点(Vertex)。 对于图的定义,我们需要明确几个注意的地方: 线性表中我们把数据元素叫元素&#xf…

实现文件分片合并功能并使用Github Actions自动编译Release

一、编译IOS镜像 1.1 编译 起因是公司电脑使用的Win11 23H2的预览版,这个预览版系统的生命周期只到2024-09-18,到期后就会强制每两小时重启。这是Windows强制升级系统的一种手段。 虽然公司里的台式电脑目前用不到,但是里面还保留许多旧项…

Jenkins定时构建自动化(一):Jenkins下载安装配置

目录 ​编辑 一、jdk下载安装 1. 已下载安装jdk 2. 未下载安装jdk 二、jenkins安装 1. .war包安装 三、获取IP地址 四、jenkins网页配置 一、jdk下载安装 1. 已下载安装jdk (1)查询jdk版本命令:java -version (2)…

[SAP ABAP] 运算符

1.算数运算符 算术运算符描述加法-减法*乘法/除法MOD取余 示例1 输出结果: 输出结果: 2.比较运算符 比较运算符描述示例 等于 A B A EQ B <> 不等于 A <> B A NE B >大于 A > B A GT B <小于 A < B A LT B >大于或等于 A > B A GE B <小…

Html去除a标签的默认样式

Html去除a标签的默认样式, a标签超链接字体默认蓝色带下划线; 去除可用: a{text-decoration:none;color:inherit;cursor:auto; }测试代码 <!DOCTYPE html> <html lang"zh-CN" dir"ltr"><head><meta charset"utf-8"/>&…

【开发12年码农教你】Android端简单易用的SPI框架-——-SPA

Service(priority 1) public class APrinterService implements IPrinterService { Override public void print() { System.out.println(“this is a printer service.”); } } 复制代码 B模块 —— BPrinterService Service(path“b_printer”, priority 2) public class…

微积分-导数1(导数与变化率)

切线 要求与曲线 C C C相切于 P ( a , f ( a ) ) P(a, f(a)) P(a,f(a))点的切线&#xff0c;我们可以在曲线上找到与之相近的一点 Q ( x , f ( x ) ) Q(x, f(x)) Q(x,f(x))&#xff0c;然后求出割线 P Q PQ PQ的斜率&#xff1a; m P Q f ( x ) − f ( a ) x − a m_{PQ} \…

java小代码(1)

代码 &#xff1a; 今日总结到此结束&#xff0c;拜拜&#xff01;

FlinkCDC sink paimon 暂不支持exactly-once写入,而通过 幂等写

幂等写入&#xff1a; 一个幂等操作无论执行多少次都会返回同样的结果。例如&#xff0c;重复的向hashmap中插入同样的key-value对就是幂等操作&#xff0c;因为头一次插入操作之后所有的插入操作都不会改变这个hashmap&#xff0c;因为hashmap已经包含这个key-value对了。另一…

算法期末整理

目录 一 算法概述 二 递归与分治策略 三 动态规划 四 贪心算法 五 回溯法 六 分支限界法 七 随机化算法 八 线性规划与网络流 一 算法概述 算法的概念 通俗地讲&#xff0c;算法是指解决问题的一种方法或一个过程。更严格地讲&#xff0c;算法是由若干条指令组成的有穷…

android 对不同日期和时间的格式方法的封装

break; default: result “星期一”; break; } return result; } /** 判断两个时间是否属于同一天 param time1 param time2 return */ public boolean isSameDay(long time1, long time2) { Calendar calen Calendar.getInstance(); calen.setTimeInMillis(t…

ROS | 常见故障排查

1.开启后发出一个WIFI WIFI名字&#xff1a;WHEELTEC接数字 安全密钥&#xff1a;dongguan 2.显示屏接口 USB接口接键鼠 3.远程登录命令 ssh -Y wheeltec192.168.0.100 是小车发出的WIFI的一个IP地址 4. 登录后确保IP地址 ip a 看一下 当前ip地址 倒数第四行-当前ip地址 1…