大模型时代,新手和程序员如何转型入局AI行业?

news2025/1/19 16:14:46

在近期的全国两会上,“人工智能”再次被提及,并成为国家战略的焦点。这一举措预示着在接下来的十年到十五年里,人工智能将获得巨大的发展红利。技术革命正在从“互联网+”向“人工智能+”逐步迈进,我将迎来新一轮技术革新和人才需求的增长。毫无疑问,AI 工程师将是未来最紧俏的岗位。

随着人工智能技术的迅猛发展,大规模预训练模型(如GPT-4、BERT等)在各类任务中表现出卓越的性能,吸引了广泛关注。这些大模型展示了在自然语言处理、计算机视觉等领域的巨大潜力。然而,在这种背景下,传统的机器学习、深度学习和神经网络依然具有不可替代的重要性。对于想要进入AI领域的新手或转行AI的程序员来说,是否直接学习大模型就是最佳选择呢?

在关注大模型发展趋势的这一年多的时间里,我一直再关注着大型模型的发展趋势并一直在进行传统机器学习的步道,那么从传统机器学习到深度学习与神经网络学习的学习路径与直接学习大模型的对比,为何前者更为合适?

一、大模型的局限性

尽管大模型在许多任务中表现出色,但它们也存在诸多局限性:

  1. 资源消耗高:大模型的训练和推理需要巨大的计算资源和能量消耗,不适用于所有场景,这对于个人学习或资源受限的情况下可能是一个不小的挑战。相比之下,传统机器学习模型在资源受限的环境中更具优势。

  2. 数据需求量大:大模型的有效性依赖于大量高质量的数据,而在许多实际应用中,数据获取和标注是一个巨大的挑战,这对于新手来说可能难以获取或者标注。传统的机器学习方法在小数据集和有限标签的情况下仍能表现出色。

  3. 透明性和可解释性:大模型通常被视为“黑箱”,难以解释其内部工作机制,这使得新手难以理解模型的决策过程和调试模型。而传统的机器学习方法,如决策树和线性回归,提供了更高的可解释性,有助于模型的调试和优化。

  4. 应用场景的限制:大模型虽然在通用任务中表现优异,但在一些特定领域和细分任务上,传统方法可能更有效。例如,在医疗诊断和金融预测中,专业知识与传统算法的结合往往能带来更好的效果。

二、传统机器学习的优势

  1. 基础理论的扎实性:传统机器学习和神经网络方法奠定了现代人工智能的基础。传统机器学习到深度学习与神经网络学习的学习路径能够帮助新手建立扎实的基础知识。从简单的线性回归和逻辑回归开始,逐步过渡到复杂的神经网络模型,理解这些方法有助于更深入地掌握新兴技术的本质,为后续学习打下坚实基础。

  2. 多样化的应用:传统机器学习到深度学习与神经网络学习的学习路径涵盖了更广泛的技术和应用场景。传统方法在各个领域都有广泛的应用,从图像处理到时间序列分析,无所不包。这些方法提供了丰富的工具箱,可以根据具体问题选择最合适的技术。新手可以根据兴趣和需求选择适合自己的学习方向,从而更好地应用所学知识。

  3. 灵活性与可定制性:传统机器学习模型和深度学习框架提供了更高的灵活性,允许研究人员和工程师根据需求进行调整和优化。例如,卷积神经网络(CNN)在图像识别中的成功就是传统神经网络方法的延续和发展。

  4. 高效的学习曲线:相比直接学习大模型,从传统机器学习开始学习,学习曲线更平缓,更适合新手逐步掌握复杂的AI技术。这种渐进式学习能够减少学习压力,提高学习效率。掌握传统机器学习和深度学习技术有助于快速理解和上手更复杂的大模型。这些技术提供了必备的数学和算法基础,使学习者能够更有效地理解和应用大模型。

  5. 理解更深入:逐步学习传统机器学习到深度学习与神经网络,能够更深入地理解AI技术的内在原理。新手不仅能够了解模型的工作原理,还能够深入研究模型的数学基础和算法原理。

与直接学习大模型相比,传统机器学习到深度学习与神经网络学习的学习路径更能够帮助新手建立扎实的基础,减少学习压力,提高学习效率,更深入地理解AI技术的内在原理,应用更加灵活多样。因此,对于想要进入AI领域的新手或转行AI的程序员来说,选择这样的学习路径可能更为合适。

三、学习传统方法的必要性

  1. 培养问题解决能力:传统机器学习方法强调特征工程和模型选择,这培养了从业者的实际问题解决能力和数据分析能力。这些技能对于构建有效的AI解决方案至关重要。

  2. 推动创新和发展:许多现代大模型的进步源于对传统方法的创新和改进。例如,Transformer模型的提出正是基于对RNN和CNN的局限性的认识和改进。了解传统方法有助于发现新的改进方向。

  3. 跨领域知识的融合:在实际应用中,AI往往需要与其他领域知识相结合。传统机器学习方法具有较强的跨领域适应性,能够与其他学科的方法论和知识体系进行有机结合。

  4. 应对多样化需求:不同应用场景对模型的需求各异,掌握多种技术手段有助于灵活应对。传统机器学习方法在许多特定任务中依然表现出色,可以有效补充大模型的不足。

四、想要进入AI领域:传统机器学习是最佳途径

  1. 全面建立基础:这一学习路径能够帮助新手建立扎实的基础知识,理解机器学习和神经网络的原理和算法,为后续学习大模型打下坚实基础。

  2. 渐进式学习:传统机器学习方法为新手提供了一个渐进式学习的路径,从简单的线性回归和逻辑回归开始,逐步过渡到复杂的深度学习模型,降低了学习的难度和门槛。

  3. 理论与实践并重:通过学习传统机器学习和深度学习方法,新手不仅能够理解算法的原理和数学基础,还能够通过实际项目的实践应用来加深理解和提升技能。

  4. 满足不同需求:传统机器学习方法和深度学习技术在不同领域和应用场景中都有广泛的应用,新手可以根据个人兴趣和职业目标选择最适合自己的学习路径,满足不同的需求。

在大模型广泛应用的时代,对于想要进入AI领域的新手或者是想要转行AI的程序员来说,从传统机器学习到深度学习与神经网络学习的学习路径更为合适。这一路径不仅能够帮助他们建立扎实的基础,减少学习压力,提高学习效率,更深入地理解AI技术的内在原理,应用更加灵活多样。

对比之下,直接学习大模型虽然能够在一定程度上快速掌握当下最前沿的技术,但其高资源消耗、数据需求量大、透明性差以及应用场景受限等局限性,对于新手来说可能会增加学习的难度和挑战。

因此,选择从传统机器学习到深度学习与神经网络学习的学习路径,不仅能够更好地理解AI技术的本质和原理,还能够为未来的学习和发展奠定坚实的基础。对于想要在AI领域取得长远成功的新手或者转行者来说,这样的学习路径更加可取。这一路径能够帮助他们建立扎实的基础,减少学习压力,提高学习效率,更深入地理解AI技术的内在原理,应用更加灵活多样。在这个过程中,持续学习、实践和探索是取得成功的关键。

既然大模型现在这么火热,各行各业都在开发搭建属于自己企业的私有化大模型,那么势必会需要大量大模型人才,同时也会带来大批量的岗位?“雷军曾说过:站在风口,猪都能飞起来”可以说现在大模型就是当下风口,是一个可以改变自身的机会,就看我们能不能抓住了。

那么,我们该如何学习大模型?

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

一、大模型全套的学习路线

学习大型人工智能模型,如GPT-3、BERT或任何其他先进的神经网络模型,需要系统的方法和持续的努力。既然要系统的学习大模型,那么学习路线是必不可少的,下面的这份路线能帮助你快速梳理知识,形成自己的体系。

L1级别:AI大模型时代的华丽登场

L2级别:AI大模型API应用开发工程

L3级别:大模型应用架构进阶实践

L4级别:大模型微调与私有化部署

一般掌握到第四个级别,市场上大多数岗位都是可以胜任,但要还不是天花板,天花板级别要求更加严格,对于算法和实战是非常苛刻的。建议普通人掌握到L4级别即可。

以上的AI大模型学习路线,不知道为什么发出来就有点糊,高清版可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

三、大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img

四、AI大模型商业化落地方案

img

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1847859.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

鸿蒙开发:【组件启动规则(FA模型)】

组件启动规则(FA模型) 启动组件是指一切启动或连接应用组件的行为: 启动PageAbility、ServiceAbility,如使用startAbility()等相关接口。连接ServiceAbility、DataAbility,如使用connectAbility()、acquireDataAbili…

MySQL之复制(八)

复制 复制和容量规划 备库什么时候开始延迟 一个关于备库比较普遍的问题是如何预测备库会在何时跟不上主库。很难去描述备库使用的复制容量为5%与95%的区别,但是至少能够在接近饱和前预警并估计复制容量。首先应该古纳差复制延迟的尖刺。如果有复制延迟的曲线图&…

如何将现有系统逐步优化成微服务设计

目录 基础服务改造核心步骤准备阶段实施阶段 基础服务设计 本文诞生于学习架构实践专栏后的深思以及总结,结合公司之前“大泥球”的架构风格,改造服务设计的思维。 改造公司系统服务主要原因:1、代码类似“屎山”,牵一发而动全身&…

Freertos-----任务之间的消息传递(使用消息队列信号量方法)

这次来分享任务之间的数据传递的方法,方法有很多种,我展示2种,让大家对freertos有更深刻的印象 目录 消息队列 信号量 消息队列 首先直接打开普中的例程,然后在里面加上ADC的驱动代码,先初始化外设先,我…

亚足联官方公布18强赛抽签时间及规则,国足确认位列第五档,你们觉得国足能进世界杯吗?

亚足联官方公布18强赛抽签时间及规则,国足确认位列第五档,你们觉得国足能进世界杯吗? 今天亚足联官方宣布了世预赛18强赛分组抽签仪式时间,本次抽签仪式将于6月27日15点在马来西亚吉隆坡举行。除了抽签时间之外,足联还…

L55--- 257.二叉树的所有路径(深搜)---Java版

1.题目描述 2.思路 (1)因为是求二叉树的所有路径 (2)然后是带固定格式的 所以我们要把每个节点的整数数值换成字符串数值 (3)首先先考虑根节点,也就是要满足节点不为空 返回递归的形式dfs(根节…

Service方法增加@Asyn注解后导致bean无法找到 NoSuchBeanDefinitionException

Service方法增加Asyn注解后导致bean无法找到 NoSuchBeanDefinitionException 场景处理方法原因 场景 首先确认的是Service添加了Service或Component等注解,另外也增加了ComponentScan确定扫描的包路径是包含对应Service的,但就是无法找到这个bean。 通…

C51与MDK共存版本安装教程

目录 一、安装准备 1.1 新建文件夹 1.2 网盘链接-加Q 667198390 二、 双版本共存安装教程 2.1 安装Keil5 C51 2.2 安装Keil5 MDK 2.3 C51和MDK的共存 2.4 生成许可证 2.5 安装STM32Pack包 一、安装准备 1.1 新建文件夹 如下图: 在合适的网盘里&#xff08…

阿里云如何实现express的自动化部署(保姆级教程)

本篇文章将详细介绍一下阿里云如何实现express的自动化部署,作者本人总结的保姆级教程!!! 首先去阿里云官网 (阿里云-计算,为了无法计算的价值) 搜索函数计算fc 如果没有开通过选择免费开通,…

计算机组成原理 | 计算机系统概述

CPI:(Clockcycle Per Instruction),指每条指令的时钟周期数。 时钟周期:对CPU来说,在一个时钟周期内,CPU仅完成一个最基本的动作。时钟脉冲是计算机的基本工作脉冲,控制着计算机的工作节奏。时钟周期 是一个时钟脉冲所…

【第24章】Vue实战篇之用户信息展示

文章目录 前言一、准备1. 获取用户信息2. 存储用户信息3. 加载用户信息 二、用户信息1.昵称2.头像 三、展示总结 前言 这里我们来展示用户昵称和头像。 一、准备 1. 获取用户信息 export const userInfoService ()>{return request.get(/user/info) }2. 存储用户信息 i…

服装连锁实体店bC一体化运营方案

一、引言 随着互联网的快速发展和消费者购物习惯的变化,传统服装连锁实体店在面对新的市场环境下亟需转型升级。BC(Business to Consumer)一体化运营方案的实施将成为提升服装连锁实体店竞争力和顾客体验的关键举掖。商淘云详细介绍服装连锁…

深度学习论文: Depth Anything V2

深度学习论文: Depth Anything V2 Depth Anything V2 PDF: https://arxiv.org/pdf/2406.09414v1 代码:https://depth-anything-v2.github.io/ PyTorch代码: https://github.com/shanglianlm0525/CvPytorch PyTorch代码: https://github.com/shanglianlm0525/PyTorch-Networks …

黑神话悟空-吉吉国王版本【抢先版】

在中国的游戏市场中,一款名为“黑神话悟空”的游戏引起了广泛的关注。这款游戏以中国传统的神话故事“西游记”为背景,创造了一个令人震撼的虚拟世界。今天,我们要来介绍的是这款游戏的一种特殊版本,那就是吉吉国王版本。 在吉吉国…

Go微服务: redis分布式锁在集群中可能遇到的问题及其解决方案

概述 我们的 redis 一般都是集群来给我们程序提供服务的,单体的redis现在也不多见 看到上面是主节点redis和下面是6个重节点redis,主节点和重节点的通讯都是畅通没问题的这个时候,我们有 gorouting 写我们的数据,那它就会用到我们…

《沃趣 分手后霸道少爷宠爆我》盛大开机典礼

南京五聚文化传媒有限公司自豪地宣布,引人入胜的2024年度短剧巨作——《沃趣 分手后霸道少爷宠爆我》——今日正式开拍!在星辰下的华丽舞台上,我们汇集了业界的精英力量,准备讲述一个关于爱、错位与重生的故事。 典礼精彩亮点 1.…

openh264 宏块级码率控制源码分析

openh264 宏块级码率控制函数关系 宏块级核心函数分析 WelsRcMbInitGom函数 功能:openh264 码率控制框架中宏块级码率控制函数,根据是否启用GOM QP来决定如何设置宏块的QP值,以控制编码的质量和比特率。原理过程: 函数参数&…

高效管理:好用的项目管理工具推荐

在当今快速变化的商业环境中,高效的项目管理工具能够显著提升团队的生产力和项目的成功率,还能有效地跟踪项目进度。所以,一款优秀的项目管理工具首先要具备先进的项目管理理念,支持多种研发管理和项目管理方法论,才能…

“打造智能售货机系统,基于ruoyi微服务版本生成基础代码“

目录 # 开篇 1. 菜单 2. 字典配置 3. 表配置 3.1 导入表 3.2 区域管理 3.3 合作商管理 3.4 点位管理 4. 代码导入 4.1 后端代码生成 4.2 前端代码生成 5. 数据库代码执行 6. 点位管理菜单顺序修改 7. 页面展示 8. 附加设备表 8.1 新增设备管理菜单 8.2 创建字…

高效处理大数据:Kafka的13个核心概念详解

我是小米,一个喜欢分享技术的29岁程序员。如果你喜欢我的文章,欢迎关注我的微信公众号“软件求生”,获取更多技术干货! 大家好,我是你们的小米!今天我们来深入探讨一下Kafka这个强大而复杂的数据流平台。Kafka被广泛应用于高吞吐量、低延迟的数据流应用场景中。那么,我…