【纯干货级教程】深度学习根据loss曲线进行分析调参

news2025/1/14 1:11:43

相信很多刚刚接触目标检测系列算法小伙伴跑深度学习算法时会有许多困惑,比如训练得出的loss曲线有什么意义?训练的一些参数要如何设置选择?选择哪个算法模型作为baseline、选择哪个参数量/复杂度/深度的模型进行训练最为合适?

本文将主要从训练过程中、训练得出的结果文件来进行阐述如何对自己的模型进行精进。如何对自己的模型进行调参分析。

当然,本文在阐述的时候可能会存在结论不全的情况,若你有相关疑问,欢迎在评论区批评指正、互相交流!我也会在后续持续进行更新完来完善该文章,欢迎关注。

一、训练得出的loss曲线有什么作用?

在训练结束后,通常会输出loss曲线,它是一种工具,能够帮助我们用以判断训练的好坏。

有些初学的小伙伴可能会将loss曲线当成影响指标的原因,但注意此处不能顾名思义,你在训练过程中若看见两轮输出的loss数值均正常下降,而评估的结果却不一定会变好,它只能作为一种分析的手段,没有绝对性。

以yolov5/v7为例,loss曲线通常输出trainloss和valloss

输出的loss曲线通常会有以下特征。

1.正常收敛

现象描述:train和val的曲线均趋于平缓,指标的值也趋于平缓,虽然train看起来还未收敛(主要原因是我没认真去调~)。同时,示例图片有些波动,但这其实是数据集较少的原因导致,此情况见第6点。

2.没有完全收敛(欠拟合)

现象描述:曲线没有下降到趋于平缓的情况。此处的val乍一看开始是下降了然后趋于平缓,但这是视觉上的问题,本质上忽略掉前几个epoch则可发现val仍在下降,且下降地不完全明显。同时,四个指标的趋势仍在上升,将其数据单独拿出则可明白仍未收敛。

解决方法:加大epoch、加大batchsize、换用更深的模型、很难拟合的情况尝试加载预训练权重、加大数据集评估结果较差的那个类别的图片数量。

3.过拟合

现象描述:如图,指标的曲线正常下降趋于平缓甚至逐渐降低,而val由正常下降再平缓再趋于上升,这是一个典型的过拟合情况。

解决方法:减少epoch、减少batchsize、增加数据集数据量(一般不这样做)、减小网络复杂度、减小层数、更换参数量较低的模型如YOLOv5x转YOLOv5s测试。

4.过早收敛

现象描述:乍一看曲线很平滑,也趋于收敛。但仔细观察,在约第20个epoch时,模型快速收敛,这或许说明采用的模型深度太深、数据集太过简单(也侧面反映了模型深度深过于复杂)、batchsize过高。

解决方法:降低batchsize、换参数量、深度较小的模型或对某些模块进行删除修改或替换轻量化模块等、降低学习率。

若你的数据集本来就很简单,则属于正常收敛,但若你的数据集并不小,如有几千、几万张,则考虑上述解决方法。

5.训练失败

(此处就不配图了,博主暂时没遇到这种情况,请根据现象描述进行判断)

现象描述:曲线乱跳、没有指标输出(均为0)

这种情况的train和val的曲线趋势相同,几乎都是一条水平的直线,并且虽然花了时间训练、训练过程中没有报什么错,但模型在本次训练中几乎没有学习到什么。该现象存在以下原因:

当在不对拉取的项目文件做修改时,往往是数据集的原因,数据集出现了严重的标注错误、类别混淆等。

数据集数量太小,选择的epoch也很少,不足以支持学习。

检测的类别的模样相差很大,但却标注了同一类名称,目标较难识别。这种情况需要对数据集进行重新设计。

项目文件存在缺陷,这种情况通过

解决方法:先检查数据集,这通常绝大部分原因是数据集的问题(尤其是数量、质量)。确认无误后尝试更换优化器。再测试别的对比试验,实在不行就放弃该实验采用别的实验,节约时间。

6.曲线震荡幅度大

现象描述:曲线不是很平滑规整、同时指标也不是很平滑规整。

解决方法:加大数据集的数据量,略微增加epoch。

7.train和val均升高

现象描述:这种情况通常train和val的loss图像都是向上的,指标很差或直接为0。这种情况博主也没遇到过,故不配图。

解决方法:若是自己设计的网络,检查模型是否存在问题,是否合理。检查自己配置文件的参数设置是否正常。检测数据集是否存在严重质量上的问题。

正常会遇到的情况绝大多数是:过拟合、欠拟合。

很多时候盲目增大batchsize、epoch反而会降低评估的结果。

同时,看loss曲线的变化并不能百分百判断出遇到的情况,博主建议大家一点一点地做修改,一次解决一个问题测试后再解决,一步一步排错,方能完美地解决问题。

二、一些心得:如何最大情况地避免训练过程中出现问题?我们在训练前应该做到什么?

1.明确目的

意思是你进行训练要做什么用?工业或是科研?以科研为例,分析你的场景需求是否适合讲故事,自己能否说得通等,分析比如你在疫情期间去写检测口罩的论文会更好通过,现在显然作用没有之前那么大。

2.选择合适的数据集

选择数据集的时候重点关注数据集是否存在标注错误、图像质量如何、图像数量是否足够支撑一篇论文所需的量、数据文件大小是否适合你的机器等。

及时排除能省不少事。如RSOD数据集就存在标注错误,这很可能会对你的训练结果产生一定影响。

3.先测对比试验

选择合适的baseline作为你的改进基础,据此进行改进。笔者曾在SSDD进行实验,当我测试其在YOLOv7-tiny的训练结果时在83左右正常收敛,输出曲线也并无什么异常,于是直接进行魔改,测试了一段时间涨点百分之11后一测对比试验,结果只打过了YOLOv5-n,于是惨遭失败。因此,为了节约时间,一定要注意自己的步骤。

4.制定计划

改进过程中,最好自己先制定一个计划,设计一个表格来展示你的Precision、Recall、map@0.5、map@0.5:.95、F1分数以及GFLOPS,据此做出对比与参考,同时对实验出的文件进行留样,选择必要的文件进行存储,并用以说明实验时发现的问题等。

5.详细分析

对自己的baseline进行分析,主要是对自己的loss曲线做分析,根据第一大点分析收敛地是否合理,曲线是否足够平滑。

完成上述步骤后,则可以尽量减少实验出现的失误以节约时间。

三、补充:我们在训练过程中得出的文件重点要关注什么?——以YOLOv5/v7为例

若直接以YOLOv7的项目文件为基础不做多余的修改进行训练,将会得出以下文件

其中我们需要重点关注的文件有:

1.weights文件夹下的best.pt/last.pt

如图所示,其中best.pt用于存放你目前评估结果最佳的模型权重,last.pt用于存放你训练中断或结束后的最后一个已经评估完成的epoch,主要用于断点重训,在项目文件的train.py中将resume设为true即可断点重训。当你需要这么做的时候请看点

2.confusion_matrix

混淆矩阵通过计算基于混淆矩阵的各种性能指标,如准确率、召回率、精确率、F1分数以及mAP(Mean Average Precision)等,可以全面评估目标检测模型在不同类别上的表现。

也能够直接展示出哪些类别被频繁误分类或漏检,有助于识别模型在特定类别上的弱点,尤其是在类别分布不均的数据集中。

通过分析混淆矩阵,我们可以针对性地优化模型,比如对频繁产生假正例的类别调整分类阈值,或对特定类别增加训练数据以提高模型的泛化能力。

通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)

3.F1_curve

F1分数作为精确率和召回率的调和平均值,能够综合评估模型在这两方面的表现,帮助找到一个二者之间的平衡点。

有些时候,某些类别的对象可能远多于其他类别,导致模型倾向于预测该类别而忽视其他数量较少的类别。F1分数在这种情况下尤为有用,因为它不会像准确率那样受到类别频率的影响,可以更公平地评估模型在所有类别上的表现。

同时,在比较不同的目标检测算法或模型时,F1分数提供了一个统一的标准,使得不同方法的性能可以直接进行对比。

通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)

如图的F1分数最佳值为0.76,而0.618应为面积比。

4.hyp.yaml/opt.yaml

用于存放你训练过程中设置的参数。

5.P_curve

通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)

展示了你的Precision曲线。

6.R_curve

通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)

展示了你的Recall曲线。

7.PR_curve

通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)

展示了你的P-R曲线。

8.results.txt

用于展示你训练过程中的各个数据输出,比如train_loss、val_loss以及四个指标Precision、Recall、map@0.5、map@0.5:.95,输入图像尺寸以及epoch结束的最后一个标签加载数(该数字可用于定位是否发生了断点训练)

9.results.png

用于展示results.txt的文件,通常只有完全训练结束后才会生成这个文件(即中途中断训练又不断点重训则不会生成)。

当你的类别数为1时,classification则为一条直线或如图所示的情况

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1827575.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Apache IoTDB进行IoT相关开发实践

当今社会,物联网技术的发展带来了许多繁琐的挑战,尤其是在数据库管理系统领域,比如实时整合海量数据、处理流中的事件以及处理数据的安全性。例如,应用于智能城市的基于物联网的交通传感器可以实时生成大量的交通数据。据估计&…

15. 第十五章 类和对象

15. 类和对象 到现在你已经知道如何使用函数组织代码, 以及如何使用内置类型来组织数据. 下一步将学习面向对象编程, 面向对象编程使用自定义的类型同时组织代码和数据. 面向对象编程是一个很大的话题, 需要好几章来讨论.本章的代码示例可以从↓下载, https://github.com/Alle…

Linux 并发与竞争实验学习

Linux 并发与竞争实验学习 原子操作实验 这里原子操作就是采用原子变量来保护一个程序运行的完整过程,使用atomic 来实现一次只能允许一个应用访问 LED,创建atomic.c文件,其实改动内容就是添加原子变量, 要在设备结构体数据添加…

MEMS:Lecture 19 Wafer bonding package

讲义 Current MEMS Packages Die Level (芯片级) 封装 图片描述:左侧的图显示了Cronos继电器的芯片级封装。这种封装方式是在晶圆切割后,将独立的MEMS芯片组装到单独的陶瓷封装中。特点: Die level release and ceramic package&#xff1a…

数据库管理-第204期 数据库的IO掉速,也许是SSD的锅(20240615)

数据库管理204期 2024-06-15 数据库管理-第204期 数据库的IO掉速,也许是SSD的锅(20240615)1 SSD物理结构2 SSD颗粒类型3 DRAM & SLC Cache3.1 DRAM3.2 SLC Cache3.3 其他方式 4 缓外降速总结 数据库管理-第204期 数据库的IO掉速&#xff…

C++ Windows下Glog日志库安装使用教程

🙋 介绍:glog是google推出的一款轻量级c++开源日志框架。  环境配置:windows+VS2015+gflags 2.2.2+glog-0.3.5。为避免新版本(glog V0.7.1)踏坑,建议装低版本,这里我选用的是V0.3.5。 1. 下载 在gflags官方中下载gflags代码,官方地址 在Glog官方中下载,githut地址:…

探索开源世界:2024年值得关注的热门开源项目推荐

文章目录 每日一句正能量前言GitCode成立背景如何使用GitCode如何把你现有的项目迁移至 GitCode?热门开源项目推荐actions-poetry - 管理 Python 依赖项的 GitLab CI/CD 工具项目概述技术分析应用场景特点项目地址 Spider - 网络爬虫框架项目简介技术分析应用场景项…

【Mac】Luminar Neo for mac(图像编辑软件)软件介绍及同类型软件比较

Luminar Neo软件介绍 Luminar Neo 是一款由 Skylum 开发的功能强大的照片编辑软件,专为摄影师和摄影爱好者设计。它适用于 Mac 和 Windows 平台,提供了一系列先进的编辑工具和功能,使用户能够轻松提升和优化他们的照片。以下是 Luminar Neo …

C#开发-集合使用和技巧(四)集合中常用的查询方法

集合中常用的查询方法 测试数据准备:查询方法详解**Where**条件查询定义和注释:功能详细说明:应用实例查找所有设备类型为“生产设备”的对象 结果测试:查询所有测试结果大于90的设备多条件查询:类型为生产设备同时测试…

2023年的Top20 AI应用在近一年表现怎么样?

AI应用现在进入寒武纪大爆发时代,百花争艳。如果倒回到2023年初,那时候排名靠前的AI应用在一年多时间,发生了哪些变化?能带给我们什么启示? 在2023年1月,排名靠前20的AI应用是: DeepL&#xff…

datax图形化界面datax-web安装及使用

环境准备:需要先安装git和maven git安装可参考git的安装-CSDN博客 maven只需解压安装包,配置环境变量即可使用 1 源代码下载 直接从Git上面获得datax-web源代码 git clone https://gitee.com/WeiYe-Jing/datax-web.git 2 打包项目 进入项目源码根…

Spring底层架构核心概念解析

BeanDefinition BeanDefinition表示Bean定义,BeanDefinition中存在很多属性用来描述一个Bean的特点.比如: beanClass:表示Bean类型scope:表示Bean作用域,单例/原型等lazyInit:表示Bean是否懒加载initMethodName:表示Bean初始化时要执行的方法destoryMethodName:表示Bean销毁时…

用于每个平台的最佳WordPress LMS主题

你已选择在 WordPress 上构建学习管理系统 (LMS)了。恭喜! 你甚至可能已经选择了要使用的 LMS 插件,这已经是成功的一半了。 现在是时候弄清楚哪个 WordPress LMS 主题要与你的插件配对。 我将解释 LMS 主题和插件之间的区别,以便你了解要…

Unity中实现ScrollRect 滚动定位到视口内

Demo链接: https://download.csdn.net/download/qq_41973169/89439428https://download.csdn.net/download/qq_41973169/89439428 一、前言 Unity版本:2020.1.x 如果需要资源请联系我我会分享给你 因为本人也要存储一下Demo所以上传到这里了但是又不能设置不需要积分 在Un…

车载网络安全指南 软件层面开发阶段(八)

返回总目录->返回总目录<- 目录 前言 一、软件层面产品开发启动 二、确定网络安全需求 三、软件架构设计 四、软件层面漏洞分析 五、软件单元设计和实现 六、软件实现的分析与评估 七、软件单元测试 八、软件集成和测试 九、网络安全验证 十、细化网络安全评估…

发布自己的c#包到nuget

1)创建自己的nuget账号 NuGet Gallery | Home 2)在Rider中-->项目邮件-->properties 注意&#xff1a;必须勾选生成nuget包 3)编译后&#xff0c;将生成一个包 4)点击上传包 5)将之前的nuget包拖拽过来&#xff0c;点击上传即可&#xff0c;如果有不对的比如&#xf…

C++ 43 之 自增运算符的重载

#include <iostream> #include <string> using namespace std;class MyInt{friend ostream& operator<< (ostream& cout , MyInt& int1); public:MyInt(){this->m_num 0;}// 前置自增&#xff1a; 成员函数实现运算符的重载 返回的是 引用&a…

Android 蓝牙配对Settings应用里面的简要流程记录

Android 蓝牙配对Settings应用里面的简要流程记录 文章目录 Android 蓝牙配对Settings应用里面的简要流程记录一、前言二、Settings蓝牙配对的关键代码1、接收蓝牙请求的地方 AndroidManifest.xml2、BluetoothPairingRequest3、BluetoothPairingService4、BluetoothPairingDial…

石头、剪子、布小游戏图形化

石头、剪子、布小游戏图形化 也是之前编写了一个石头、剪子、布的小游戏&#xff0c;总感觉界面不够友好&#xff0c;AI时代到来&#xff0c;一切都无所不能&#xff0c;而且编程效率大大提高了。所以用AI大模型进行程序代码重构&#xff0c;再稍加修改&#xff0c;效果还不错…

LLM proj - 审稿大模型

常用数据处理 主要是四种方式&#xff1a;正则表达式、AC自动机、困惑度过滤低质文本、最小哈希算法实现文本去重 1. 正则表达式&#xff0c;去做一些模式匹配 ex&#xff1a; # 论文的评审内容有时会存在大量列举reference&#xff08;参考文献&#xff09;的情况 # 这些r…