Android中的消息异步处理机制及实现方案

news2024/10/6 10:31:39

基本介绍

  • 当我们需要执行复杂的计算逻辑,网络请求等耗时操作时,服务器可能不会立即响应请求,如果不将这类操作放在子线程中运行,就会导致主线程被阻塞住,从而影响用户的使用体验
  • 如果想要更新应用程序中的UI控件,则必须在主线程中进行,否则就会出现android.view.ViewRootImpl$CalledFromWrongThreadException异常

代码实践

  • 有些时候,我们需要在子线程中执行一些耗时任务,再根据任务的执行结果来更新相应的UI控件,对此,Android提供了一套异步消息的处理机制,解决了在子线程中进行UI操作的问题,我们先来看看异步消息处理的使用方法,再来分析其中的原理
import androidx.annotation.NonNull;
import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;
import android.os.Handler;
import android.os.Looper;
import android.os.Message;
import android.view.View;
import android.widget.Button;
import android.widget.TextView;

import com.example.myapplication1.R;

import java.util.concurrent.TimeUnit;

public class EventHandlerActivity extends AppCompatActivity {

    private static final int CALCULATE_KEY = 2024;
    private Button calculateBtn;
    private TextView resultTv;

    // 创建Handler实例,用于在主线程中更新UI
    private Handler myHandler = new Handler(Looper.getMainLooper()) {
        @Override
        public void handleMessage(@NonNull Message msg) {
            if (msg.what == CALCULATE_KEY) {
                resultTv.setText("Result: " + msg.obj);
            }

        }
    };
    
    @Override
    protected void onCreate(Bundle savedInstanceState) {
        super.onCreate(savedInstanceState);
        setContentView(R.layout.activity_event_handler);

        calculateBtn = findViewById(R.id.calculateBtn);
        resultTv = findViewById(R.id.resultTv);

        calculateBtn.setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                // 点击按钮后,开始执行复杂计算
                calculateFunc();
            }
        });
    }

    private void calculateFunc() {
        // 创建一个新线程来执行耗时操作
        new Thread(new Runnable() {
            @Override
            public void run() {
                long result = factorial(5);
                // 模拟复杂的耗时计算
                try {
                    Thread.sleep(3000);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
                // 发送消息给Handler,以便在主线程中更新UI
                // 另外,为了避免频繁地创建和销毁 Message 对象,可以使用 Message.obtain() 方法从消息池中获取一个消息实例,以减少内存分配和垃圾回收的频率
                Message message = Message.obtain();
                message.what = CALCULATE_KEY;
                message.obj = "calculate result = " + result;
                myHandler.sendMessage(message);
                
                // sendMessageDelayed(Message msg, long delayMillis): 在指定的延迟时间后发送Messag, delayMillis为单位为毫秒
                // myHandler.sendMessageDelayed(message,5000);
            }
        }).start();

    }


    private long factorial(int num){
        if (num < 2) return 1;
        return num * factorial(num - 1);
    }
}
  • activity_event_handler.xml:
<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
    xmlns:app="http://schemas.android.com/apk/res-auto"
    xmlns:tools="http://schemas.android.com/tools"
    android:layout_width="match_parent"
    android:layout_height="match_parent"
    tools:context=".handle.EventHandlerActivity">

    <Button
        android:id="@+id/calculateBtn"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:text="Calculate Factorial"
        android:textAllCaps="false"/>

    <TextView
        android:id="@+id/resultTv"
        android:layout_width="wrap_content"
        android:layout_height="wrap_content"
        android:layout_below="@id/calculateBtn"
        android:layout_marginTop="16dp"/>

</RelativeLayout>
  • 如上代码,点击calculateBtn按钮,交由工作线程完成计算操作,将计算机结果显示在resultTv(交由主线程完成UI操作)

原理实现

  • Android中的异步消息处理主要由四部分组成:Message、Handler、MessageQueue和Looper,下面对这四部分来进行详细介绍

Message

  • Message是在线程之间传递的消息,可以在内部携带少量的数据,用于在不同线程间交换,其实例包含what
  • Message的what字段是一个整数值,可用来分区不同的消息类型,可为不同的任务或事件分配不同的what值,当调用Handler实例handleMessage方法时,可检查Message对象的what字段来确定如何处理该消息
  • arg1和arg2字段:均为整数类型字段,可携带what之外其他的整数类型数据
  • obj字段:Object类型字段,可携带字符串、数组、对象、Bundle等类型数据

Handler

  • Handler:处理者,主要用于发送和处理消息,发送消息一般是调用Handler实例的**sendMessage()方法,而发出的消息经过一系列辗转处理后,最终会交由handleMessage()**方法来处理
  • Handler是在主线程中创建的,handleMessage()方法也会在主线程中执行,故不存在UI操作引起的线程安全问题

MessageQueue

  • 消息队列,主要用于存放所有通过Handler发送的消息,这部分消息会一直存在于MessageQueue中,等待被处理;每个线程只有一个MessageQueue对象

Looper

  • Looper:每个线程中MessageQueue的管理者,调用loop()之类的方法后,就会进入到消息的循环监听中,每当发现MQ中存在消息,就会将其取出,传递到handler.handleMessage()方法中;每个线程中也只用一个Looper对象

异步处理流程

  • 1)在主线程中创建Handler对象,并重写handleMessage()方法
  • 2)当子线程中需要进行UI操作时,就创建一个Message对象,并通过Handler将Message发送出去
  • 3)发送出的Message会被添加到MessageQueue中等待被处理
  • 4)Looper会一直监听MessageQueue中的消息,一旦发现待处理的消息就取出,再分发到Handler的handleMessage()方法中处理消息
    在这里插入图片描述
    如上,Message经过一系列辗转调用后,由子线程完成耗时操作的处理,再由主线程完成UI操作,通过消息的异步处理机制解决UI操作可能会导致的线程安全问题

其他异步处理的实现

  • 异步处理还可以通过定时任务来实现,一种是Java API提供的Timer类,一种Android的Alarm机制,这两种实现在多数情况下都能实现类似的效果,但Timer不太适用于长期在后台运行的定时任务
  • 为能让电池耐用,Android手机会在长时间不操作的情况下自动让CPU进入到睡眠状态,这可能会导致Timer中的定时任务无法正常运行;而Alarm有唤醒CPU功能,可保证在大多数情况下需要执行定时任务时CPU都能正常工作
    下面重点介绍下Alarm的基本使用:

Alarm机制

  • Android的Alarm机制是一种系统服务可在将来的某个时间点触发定时操作,即使你的应用程序不在运行;这个机制由AlarmManager类提供,它可以用于执行定时任务,比如在特定时间发送通知、启动服务或者执行其他后台操作

主要组件:

  • AlarmManager:系统服务,负责管理和触发闹钟,可通过getSystemService(Context.ALARM_SERVICE)获取实例
  • PendingIntent:描述将要执行操作的意图对象,当闹钟触发时,AlarmManager会发送对应的PendingIntent
  • AlarmManagerService:AlarmManager的服务端实现,运行在系统进程中,负责处理闹钟的触发

基本使用如下:

    public void sendAlarm(){
        Intent intent = new Intent(ALARM_ACTION);
        // 创建用于广播的延迟意图
        PendingIntent pendingIntent = PendingIntent.getBroadcast(context,0,intent,PendingIntent.FLAG_IMMUTABLE);

        // 从系统服务中获取闹钟管理器
        AlarmManager alarmManager = (AlarmManager) context.getSystemService(Context.ALARM_SERVICE);
        // 闹钟的触发时机
        long triggerTime = SystemClock.elapsedRealtime() + 2 * 1000;
        if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.M) {
            // 允许在空闲时发送广播(Android6.0之后新增的方法)
            alarmManager.setAndAllowWhileIdle(AlarmManager.ELAPSED_REALTIME_WAKEUP,triggerTime, pendingIntent);
        } else {
            // 设置一次性闹钟,延迟若干秒后,携带延迟意图发送闹钟广播(Android6.0之后,set方法在暗屏时不保证发送广播)
            alarmManager.set(AlarmManager.ELAPSED_REALTIME_WAKEUP,triggerTime,pendingIntent);
        }
        // 设置重复闹钟,每隔一定时间间隔就发送闹钟广播(从Android4.4开始,setRepeating方法不保证按时发送广播)
       //  alarmManager.setRepeating(AlarmManager.RTC_WAKEUP,System.currentTimeMillis(),1000,pendingIntent);

        // 取消闹钟
        // alarmManager.cancel(pendingIntent);

        // 获取下一个闹钟的信息
        // alarmManager.getNextAlarmClock();

    }
使用说明
  • AlarmManager部分源代码如下:
@SystemService(Context.ALARM_SERVICE)
public class AlarmManager {
    private static final String TAG = "AlarmManager";

   // ...
    /** @hide */
    @IntDef(prefix = { "RTC", "ELAPSED" }, value = {
            RTC_WAKEUP,
            RTC,
            ELAPSED_REALTIME_WAKEUP,
            ELAPSED_REALTIME,
    })
    // ...
    @Retention(RetentionPolicy.SOURCE)
    public @interface AlarmType {}
public void set(@AlarmType int type, long triggerAtMillis, @NonNull PendingIntent operation) {
    setImpl(type, triggerAtMillis, legacyExactLength(), 0, 0, operation, null, null,
                (Handler) null, null, null);
    }
    //  ...
}

参数说明:

  • type:指定AlarmManager的工作类型,有四个选项:RTC_WAKEUP、RTC、ELAPSED_REALTIME_WAKEUP、ELAPSED_REALTIME
    RTC_WAKEUP:让定时任务的触发时间从1970年1月1日0点开始算起,不会唤醒CPU;
    RTC:让定时任务的触发时间从1970年1月1日0点开始算起,不会唤醒CPU
    同理,
    ELAPSED_REALTIME_WAKEUP:让定时任务的触发时机从系统开机算起,会唤醒CPU;
    ELAPSED_REALTIME:让定时任务的触发时机从系统开机算起,但不会唤醒CPU
    =》带WAKEUP的会唤醒CPU,带ELAPSED_REALTIME的从系统开机算起
  • triggerAtMillis:定时任务触发的时间,单位为毫秒
    SystemClock.elapsedRealtime():从系统开机至今所经历的毫秒数
    System.currentTimeMillis():从1970年1月1日0点至今所经历的毫秒数
  • PendingIntent对象:一般调用getService()或getBroadcast()方法来获取执行服务或广播的PendingIntent;当定时任务被触发时,服务的onStartCommand()或广播接收器onReceive()方法就可得到执行

扩展

前面我们知道了如何异步地处理消息,实现原理,现在再来全面地看看消息异步处理解决的问题:

  • 1)线程安全:Android UI 是非线程安全的,即所有的 UI 操作必须在主线程中执行;任何在工作线程中直接对 UI 进行操作都会导致不可预知的行为,甚至可能导致应用崩溃;消息异步处理机制确保了所有的 UI 更新都在主线程中执行,从而保证了线程安全
  • 2)避免ANR(Application Not Responding):如果主线程因为长时间运行的任务(如数据库操作,执行复杂计算,网络请求)而被阻塞,系统会认为应用无响应,可能会触发ANR;消息异步处理机制允许这类耗时任务在工作线程中执行,从而避免了主线程的阻塞,减少ANR的发生
  • 3)控制线程的生命周期:使用Handler和Looper,开发者可精细地控制线程的生命周期(如在线程完成所有任务后退出,或在线程空闲时清理资源)
  • 4)支持延时消息和定时任务:Handler提供了发送延时消息的功能,允许在将来的某个时间点执行任务
  • 5)提高用户体验:通过在工作线程中执行耗时任务,用户界面可以保持响应,提供流畅的用户体验;用户可以继续与应用交互,而不会因为后台任务的执行而感到延迟

实现异步处理的方式:Handler(sendMessage和sendMessageDelayed方法)、Timer、Alarm机制、WorkManager、Coroutine,篇幅受限,这里不多讲解

参考资料:

  • 《Android第一行代码》第二版

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1826942.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

idea远程调试docker容器内正在运行的线上项目

1.重新编写Dockerfile文件 在原本的Dockerfile上新增参数 就是 运行jar包增加调试参数 增加调试暴漏的端口号 -agentlib:jdwptransportdt_socket,servery,suspendn,address*:50052.在运行docker容器的时候增加暴漏端口5005 3.打开idea就是正在运行的项目 4.选择远程配置 5.配…

解决MyBatis获取刚插入数据的ID值

解决MyBatis获取刚插入数据的ID值 Mybatis获取刚插入数据的ID值有很多解决方法&#xff0c;目前采用以下方式进行获取。 添加完数据后直接返回刚添加数据的id // UserDao.java public static void addUser() throws Exception{InputStream resourceAsStream Resources.getR…

idea的java代码引用proto文件报错

尝试了四种办法&#xff0c;感觉第一个和第二个比较有效。 前提是要先安装了 proto 的idea插件。 1.修改idea配置文件编译大文件的限制 proto生成的源文件有数万行&#xff0c;源文件过大导致 idea 拒绝编译过大的源文件。 解决方案&#xff1a; 如果 protoc 生成的 class 文…

程序优化 --- arthas trace命令使用

最近在做优化,通过arthas的trace命令去观察方法内的耗时情况以便对程序进行修改. 1.启动arthas之后选择需要监测的程序 2.找到需要监测的接口,一般都是直接找service例子如下: trace 类地址.类名 方法名 (中间有空格)

智能计算系统-概述

1、人工智能技术分层 2、人工智能方向人才培养 3、课程体系的建议 4、智能系统课程对学生的价值 5、智能计算系统对老师的价值 6、什么是智能计算系统 7、智能计算系统的形态 8、智能计算系统具有重大价值 9、智能计算系统的三大困难 10、开创深度学习处理器方向 11、寒武纪的国…

MOS开关电路应用于降低静态功耗

本文主要讲述MOS开关电路的应用,过了好久突然想整理一下&#xff0c;有错误的地方请多多指出&#xff0c;在做电池类产品&#xff0c;需要控制产品的静态功耗&#xff0c;即使让芯片进入休眠状态&#xff0c;依旧功率很大&#xff0c;所以在电路中加一组软开关&#xff0c;防止…

嵌入式软件工程师入何突破瓶颈?

各位关注嵌入式软件工程师发展的朋友们&#xff0c;下面来探讨一下嵌入式软件工程师该如何突破瓶颈。首先要强调的是&#xff0c;不要仅仅将自己局限在嵌入式软件工程师这一角色定位上。 事实上&#xff0c;嵌入式软件工程师已经掌握了诸多业务层面的内容&#xff0c;完全有能力…

【C++】编译原理

三、C编译 前面给大家演示了如何从写C代码到编译代码再到执行代码的全过程。这个过程中非常重要的编译环节&#xff0c;被我们一个按钮或者一个ctrlF7快捷键就给带过了。其实这个环节非常重要&#xff0c;如果你非常了解这个环节&#xff0c;你开发源代码就会更加自信和清醒&a…

pytest + yaml 框架 -61.jenkins+allure+钉钉通知添加测试结果

前言 上一篇pytest + yaml 框架 -60.git+jenkins+allure+钉钉通知反馈 已经实现测试结果用钉钉通知。 本篇继续在钉钉通知里添加测试的汇总结果,此功能在pytest-yaml-yoyo v1.5.2版本上实现。 Environment Injector 插件 在运行完用例后会生成一个summary.json 文件,汇总…

【系统架构】REST风格

系列文章目录 第一章 系统架构的演进 第二章 REST风格架构 文章目录 系列文章目录前言一、进程间的通信普通管道&#xff08;Pipe&#xff09;或者具名管道&#xff08;Named Pipe&#xff09;信号&#xff08;Signal&#xff09;信号量&#xff08;Semaphore&#xff09;消息…

项目实战中学透Spring-业务场景驱动-Spring01(IOCDI)

软件环境 JDK1.8 Maven3.6 IDEA2022.3(Ultimate Edition) Spring5.3.29 主要知识点大纲 1.Spring简介 2.Spring整体架构 3.业务场景中理解Spring IOC(控制反转)和DI(依赖注入) 4.业务场景中理解IOC容器&#xff0c;实例化容器&#xff0c;实例化Bean的几种方式 5.业务…

在C#中对 JSON进行序列化和反序列化处理

概述&#xff1a;在现代软件开发领域&#xff0c;不同系统和平台之间的数据交换是不可或缺的方面。JSON&#xff08;JavaScript 对象表示法&#xff09;因其轻量级、人类可读和易于解析的特性而成为一种无处不在的数据格式。使用 C# &#x1f680;编程的 JSON 序列化和反序列化…

OpenCV学习(4.15) 基于 GrabCut 算法的交互式前景提取

1. 目标 在这一章当中 我们将看到 GrabCut 算法来提取图像中的前景我们将为此创建一个交互式应用程序。 2. 理论 GrabCut 算法由英国剑桥微软研究院 Carsten Rother&#xff0c;Vladimir Kolmogorov和Andrew Blake发明&#xff0c;并在他们的论文“GrabCut”&#xff1a;使…

使用 yocto 搭建 qemuarm64 环境

文章目录 前言一、ubuntu 环境准备1. 编译主机基础的环境准备2. 编译主机相关依赖软件的安装二、yocto5.0 代码的获取与编译1. 获取代码2. yocto5.0 代码的编译2.1 source 环境变量2.2 修改相关配置文件2.3 编译3. 启动 qemu总结参考资料前言 本文主要介绍如何在 ubuntu 下使用…

MySQL日志(二):MySQL抖动

一条SQL语句&#xff0c; 正常执行的时候特别快&#xff0c; 但是有时也不知道怎么回事&#xff0c; 它就会变得特别慢&#xff0c; 并且这样的场景很难复现&#xff0c; 它不只随机&#xff0c; 而且持续时间还很短。 看上去&#xff0c; 这就像是数据库“抖”了一下。 今天&…

FreeRTOS简单内核实现3 任务管理

文章目录 0、思考与回答0.1、思考一0.2、思考二0.3、思考三 1、任务控制块2、创建任务2.1、xTaskCreateStatic( )2.2、prvInitialiseNewTask( )2.3、pxPortInitialiseStack( )2.4、任务内存详解 3、就绪链表3.1、定义3.2、prvInitialiseTaskLists( ) 4、任务调度器4.1、vTaskSt…

阿里云系列产品免费用,不香吗?

阿里云系列产品免费用&#xff0c;不香吗&#xff1f; 什么是无影云电脑开启无影云下载安装客户端登录无影云桌面应用场景 开篇先发布一下阿里云产品免费体验地址&#xff1a;https://free.aliyun.com/?utm_contentg_1000370296 下面开始我的无影云电脑或者叫做无影云桌面的体…

LLM大语言模型算法特训,带你转型AI大语言模型算法工程师(完结)

LLM大语言模型算法 与AI大语言模型算法工程师的联系 LLM&#xff08;Large Language Model&#xff09;大语言模型是指像GPT这样的大型自然语言处理模型&#xff0c;而AI大语言模型算法工程师则是负责开发和优化这些模型的专业人士。它们之间的联系可以从以下几个方面来理解&a…

linux驱动学习(十二)之看门狗

一、看门狗定时器功能 1、产生复位信号&#xff1a;当系统受到由于噪声或者干扰而造成系统死机&#xff0c;看门狗产生一个复位信号。 2、普通定时器&#xff1a;16bits定时器&#xff0c;产生周期性的中断信号 二、看门狗系统框图 设置计数值以每隔10S就会产生一个复位信号&…

springboot依赖管理和自动配置

依赖管理和自动配置 依赖管理和自动配置依赖管理什么是依赖管理修改自动仲裁/默认版本号 starter场景启动器starter场景启动器基本介绍官方提供的starter第三方starter 自动配置自动配置基本介绍SpringBoot自动配置了哪些?如何修改默认配置如何修改默认扫描包结构resources\ap…